584 research outputs found
Growth and magnetism of self-organized arrays of Fe(110) wires formed by deposition on kinetically grooved W(110)
Homoepitaxy of W(110) and Mo(110) is performed in a kinetically-limited
regime to yield a nanotemplate in the form of a uniaxial array of hills and
grooves aligned along the [001] direction. The topography and organization of
the grooves were studied with RHEED and STM. The nanofacets, of type {210}, are
tilted 18° away from (110). The lateral period could be varied from 4 to
12nm by tuning the deposition temperature. Magnetic nanowires were formed in
the grooves by deposition of Fe at 150°C on such templates. Fe/W wires
display an easy axis along [001] and a mean blocking temperature Tb=100KComment: Proceedings of ECOSS 2006 (Paris
Tunable magnetic properties of arrays of Fe(110) nanowires grown on kinetically-grooved W(110) self-organized templates
We report a detailed magnetic study of a new type of self-organized nanowires
disclosed briefly previously [B. Borca et al., Appl. Phys. Lett. 90, 142507
(2007)]. The templates, prepared on sapphire wafers in a kinetically-limited
regime, consist of uniaxially-grooved W(110) surfaces, with a lateral period
here tuned to 15nm. Fe deposition leads to the formation of (110) 7 nm-wide
wires located at the bottom of the grooves. The effect of capping layers (Mo,
Pd, Au, Al) and underlayers (Mo, W) on the magnetic anisotropy of the wires was
studied. Significant discrepancies with figures known for thin flat films are
evidenced and discussed in terms of step anisotropy and strain-dependent
surface anisotropy. Demagnetizing coeffcients of cylinders with a triangular
isosceles cross-section have also been calculated, to estimate the contribution
of dipolar anisotropy. Finally, the dependence of magnetic anisotropy with the
interface element was used to tune the blocking temperature of the wires, here
from 50K to 200 K
X-ray photoelectron emission microscopy in combination with x-ray magnetic circular dichroism investigation of size effects on field-induced N\'eel-cap reversal
X-ray photoelectron emission microscopy in combination with x-ray magnetic
circular dichroism is used to investigate the influence of an applied magnetic
field on N\'eel caps (i.e., surface terminations of asymmetric Bloch walls).
Self-assembled micron-sized Fe(110) dots displaying a moderate distribution of
size and aspect ratios serve as model objects. Investigations of remanent
states after application of an applied field along the direction of N\'eel-cap
magnetization give clear evidence for the magnetization reversal of the N\'eel
caps around 120 mT, with a 20 mT dispersion. No clear correlation could be
found between the value of the reversal field and geometrical features of the
dots
Third type of domain wall in soft magnetic nanostrips
Magnetic domain walls (DWs) in nanostructures are low-dimensional objects
that separate regions with uniform magnetisation. Since they can have different
shapes and widths, DWs are an exciting playground for fundamental research, and
became in the past years the subject of intense works, mainly focused on
controlling, manipulating, and moving their internal magnetic configuration. In
nanostrips with in-plane magnetisation, two DWs have been identified: in thin
and narrow strips, transverse walls are energetically favored, while in thicker
and wider strips vortex walls have lower energy. The associated phase diagram
is now well established and often used to predict the low-energy magnetic
configuration in a given magnetic nanostructure. However, besides the
transverse and vortex walls, we find numerically that another type of wall
exists in permalloy nanostrips. This third type of DW is characterised by a
three-dimensional, flux closure micromagnetic structure with an unusual length
and three internal degrees of freedom. Magnetic imaging on
lithographically-patterned permalloy nanostrips confirms these predictions and
shows that these DWs can be moved with an external magnetic field of about 1mT.
An extended phase diagram describing the regions of stability of all known
types of DWs in permalloy nanostrips is provided.Comment: 19 pages, 7 figure
Phase diagram of magnetic domain walls in spin valve nano-stripes
We investigate numerically the transverse versus vortex phase diagram of
head-to-head domain walls in Co/Cu/Py spin valve nano-stripes (Py: Permalloy),
in which the Co layer is mostly single domain while the Py layer hosts the
domain wall. The range of stability of the transverse wall is shifted towards
larger thickness compared to single Py layers, due to a magnetostatic screening
effect between the two layers. An approached analytical scaling law is derived,
which reproduces faithfully the phase diagram.Comment: 4 page
Thermogravimetry and neutron thermodiffractometry studies of the H-YBa2Cu3O7 system.
The high Tc superconducting oxide YBa2Cu3O7Âżx reacts with hydrogen gas. Thermogravimetric, X-ray and neutron scattering experiments allow us to propose a two-step type of hydrogen bonding. Firstly, a few hydrogen atoms fill some oxygen vacancies and may favourably modify the electron state, giving rise to a slight increase in the critical temperature. Secondly, after a prolonged heating period, the collapse of the YBa2Cu3O7Âżx type framework and of superconductivity were observed, and a new, highly hydrogenated material appeared
High-Temperature Activated AB2 Nanopowders for Metal Hydride Hydrogen Compression
A reliable process for compressing hydrogen and for removing all contaminants
is that of the metal hydride thermal compression. The use of metal hydride
technology in hydrogen compression applications though, requires thorough
structural characterization of the alloys and investigation of their sorption
properties. The samples have been synthesized by induction - levitation melting
and characterized by Rietveld analysis of the X-Ray diffraction (XRD) patterns.
Volumetric PCI (Pressure-Composition Isotherm) measurements have been conducted
at 20, 60 and 90 oC, in order to investigate the maximum pressure that can be
reached from the selected alloys using water of 90oC. Experimental evidence
shows that the maximum hydrogen uptake is low since all the alloys are
consisted of Laves phases, but it is of minor importance if they have fast
kinetics, given a constant volumetric hydrogen flow. Hysteresis is almost
absent while all the alloys release nearly all the absorbed hydrogen during
desorption. Due to hardware restrictions, the maximum hydrogen pressure for the
measurements was limited at 100 bars. Practically, the maximum pressure that
can be reached from the last alloy is more than 150 bars.Comment: 9 figures. arXiv admin note: text overlap with arXiv:1207.354
Angular-dependence of magnetization switching for a multi-domain dot: experiment and simulation
We have measured the in-plane angular variation of nucleation and
annihilation fields of a multi-domain magnetic single dot with a microsquid.
The dots are Fe/Mo(110) self-assembled in UHV, with sub-micron size and a
hexagonal shape. The angular variations were quantitatively reproduced by
micromagnetic simulations. Discontinuities in the variations are observed, and
shown to result from bifurcations related to the interplay of the non-uniform
magnetization state with the shape of the dot.Comment: 4 pages, 4 figures, for submission as a regular articl
- …