60 research outputs found

    Effect of N3-Methyladenine and an Isosteric Stable Analogue on DNA Polymerization

    Get PDF
    N3-methyladenine (3-mA) is a cytotoxic lesion formed by the reaction of DNA with many methylating agents, including antineoplastic drugs, environmental agents and endogenously generated compounds. The toxicity of 3-mA has been attributed to its ability to block DNA polymerization. Using Me-lex, a compound that selectively and efficiently reacts with DNA to afford 3-mA, we have observed in yeast a mutational hotspot at the 5′-terminus of an A4 tract. In order to explore the potential role of sequence-dependent DNA polymerase bypass of 3-mA, we developed an in vitro system to prepare 3-mA modified substrates using Me-lex. We detail the effects of 3-mA, its stable isostere analogue, 3-methyl-3-deazaadenine, 3-deazaadenine and an THF abasic site on DNA polymerization within an A4 sequence. The methyl group on 3-mA and 3-methyl-3-deazaadenine has a pronounced inhibitory effect on DNA polymerization. There was no sequence selectivity for the bypass of any of the lesions, except for the abasic site, which was most efficiently by-passed when it was on the 5′-terminus of the A4 tract. The results indicate that the weak mutational pattern induced by Me-lex may result form the depurination of 3-mA to an abasic site that is bypassed in a sequence dependent context

    TP63 mutations are frequent in cutaneous melanoma, support UV etiology, but their role in melanomagenesis is unclear

    Get PDF
    In contrast to TP53, cancer development is rarely associated with mutations in the TP63 and TP73 genes. Recently, next generation sequencing analysis revealed that TP63 mutations are frequent, specifically in cutaneous melanomas. Cutaneous melanoma represents 4% of skin cancers but it is responsible for 80% of skin cancer related deaths. In the present study, we first determined whether all three members of the P53 family of transcription factors were found mutated in cutaneous melanomas by retrieving all TP53, TP63 and TP73 mutations from cBioPortal (http://www.cbioportal.org/). TP53 and TP63 were frequently mutated [15.0% (91/605) and 14.7% (89/605), respectively], while TP73 [1.5% (9/605)] was more rarely mutated (p<0.0001). A UV-mutation fingerprint was recognized for TP63 and TP73 genes. Then, we tried to evaluate the potential role of TP63 mutations as drivers or passengers in the tumorigenic process. In the former case, the amino acid substitutions should cause significant functional consequences on the main biochemical activity of the P63 protein, namely transactivation. The predicted effects of specific amino acid substitutions by two bioinformatics tools were rather different. Using a yeast-based functional assay, the observed hotspot mutant R379CP63 protein exhibited a substantial residual activity compared to the wild-type (>70%). This result does not support a major role of the mutant P63 protein in melanomagenesis while it is still consistent with the TP63 gene being a recorder of UV exposure. The TP63 mutation spectrum from cutaneous melanomas, when compared with that observed at the germinal level in patients affected by P63-associated diseases [ectodermal dysplasia syndromes, (EDs)], revealed significant differences. The TP63 mutations were more frequent at CpGs sites (p<0.0001) in EDs and at PyPy sites (p<0.0001) in cutaneous melanomas. The two spectra differed significantly (p<0.0001). We conclude that TP63 mutations are frequent in cutaneous melanoma, support UV etiology, but their role in melanomagenesis is unclear

    P63 modulates the expression of the WDFY2 gene which is implicated in cancer regulation and limb development

    Get PDF
    TP63 is a member of the TP53 gene family, sharing a common gene structure that produces two groups of mRNAs\u2019 encoding proteins with different N-terminal regions ( 06N and TA isoforms); both transcripts are also subjected to alternative splicing mechanisms at C-terminus, generating a variety of isoforms. p63 is a master regulator of epidermal development and homoeostasis as well as an important player in tumorigenesis and cancer progression with both oncogenic and tumour suppressive roles. A number of studies have aimed at the identification of p63 target genes, allowing the dissection of the molecular pathways orchestrated by the different isoforms. In the present study we investigated in more detail the p63 responsiveness of the WDFY2 (WD repeat and FYVE domain containing 2) gene, encoding for an endosomal protein identified as a binding partner of the PI-3K/AKT signalling pathway. We showed that overexpression of different p63 isoforms was able to induce WDFY2 expression in TP53-null cells. The p63-dependent transcriptional activation was associated with specific response elements (REs) that have been identified by a bioinformatics tool and validated by yeast- and mammal-based assays. Interestingly, to confirm that WDFY2 belongs to the p63 network of cancer regulation, we analysed the impact of WDFY2 alterations, by showing its frequent deletion in different types of tumours and suggesting its expression level as a prognostic biomarker. Lastly, we identified a chromosomal translocation involving the WDFY2 locus in a patient affected by a rare congenital limb anomaly, indicating WDFY2 as a possible susceptibility gene placed downstream p63 in the network of limb development

    Influences of base excision repair defects on the lethality and mutagenicity induced by Me-lex, a sequence-selective N3-adenine methylating agent.

    Get PDF
    Due to its minor groove selectivity, Me-lex preferentially generates N3-methyladenine (3-MeA) adducts in double-stranded DNA. We undertook a genetic approach in yeast to establish the influence of base excision repair (BER) defects on the processing of Me-lex lesions on plasmid DNA that harbors the p53 cDNA as target. We constructed a panel of isogenic strains containing a reporter gene to test p53 function and the following gene deletions: deltamag1, deltaapn1apn2, and deltaapn1apn2mag1. When compared with the wild-type strain, a decrease in survival was observed in deltamag1, deltaapn1apn2, and deltaapn1apn2mag1. The Me-lex-induced mutation frequency increased in the following order: wild typedeltamag1deltaapn1apn2 = deltaapn1apn2mag1. A total of 77 mutants (23 in wild type, 31 in deltamag1, and 23 in deltaapn1apn2) were sequenced. Eighty-one independent mutations (24 in wild type, 34 in deltamag1, and 23 in deltaapn1apn2) were detected. The majority of base pair substitutions were AT-targeted in all strains (14/23, 61% in wild type; 20/34, 59%, in deltamag1; and 14/23, 61%, in deltaapn1apn2). The Mag1 deletion was associated with a significant decrease of GCAT transitions when compared with both the wild-type and the AP endonuclease mutants. This is the first time that the impact of Mag1 and/or AP endonuclease defects on the mutational spectra caused by 3-MeA has been determined. The results suggest that 3-MeA is critical for Me-lex cytotoxicity and that its mutagenicity is slightly elevated in the absence of Mag1 glycosylase activity but significantly higher in the absence of AP endonuclease activity

    Relationship between DNA methylation and mutational patterns induced by a sequence selective minor groove methylating agent.

    Get PDF
    Me-lex, a methyl sulfonate ester appended to a neutral N-methylpyrrolecarboxamide-based dipeptide, was synthesized to preferentially generate N3-methyladenine (3-MeA) adducts which are expected to be cytotoxic rather than mutagenic DNA lesions. In the present study, the sequence specificity for DNA alkylation by Me-lex was determined in the p53 cDNA through the conversion of the adducted sites into single strand breaks and sequencing gel analysis. In order to establish the mutagenic and lethal properties of Me-lex lesions, a yeast expression vector harboring the human wild-type p53 cDNA was treated in vitro with Me-lex, and transfected into a yeast strain containing the ADE2 gene regulated by a p53-responsive promoter. The results showed that: 1) more than 99% of the lesions induced by Me-lex are 3-MeA; 2) the co-addition of distamycin quantitatively inhibited methylation at all minor groove sites; 3) Me-lex selectively methylated A's that are in, or immediately adjacent to, the lex equilibrium binding sites; 4) all but 6 of the 33 independent mutations were base pair substitutions, the majority of which (17/33; 52%) were AT-targeted; 5) AT --TA transversions were the predominant mutations observed (13/33; 39%); 6) 13 out of 33 (39%) independent mutations involved a single lex-binding site encompassing positions A600-602 and 9 occurred at position 602 which is a real Me-lex mutation hotspot (n = 9, p10(-6), Poisson's normal distribution). A hypothetical model for the interpretation of mutational events at this site is proposed. The present work is the first report on mutational properties of Me-lex. Our results suggest that 3-MeA is not only a cytotoxic but also a premutagenic lesion which exerts this unexpected property in a strict sequence-dependent manner

    Evaluating the Influence of a G-Quadruplex Prone Sequence on the Transactivation Potential by Wild-Type and/or Mutant P53 Family Proteins through a Yeast-Based Functional Assay

    Get PDF
    P53, P63, and P73 proteins belong to the P53 family of transcription factors, sharing a common gene organization that, from the P1 and P2 promoters, produces two groups of mRNAs encoding proteins with different N-terminal regions; moreover, alternative splicing events at Cterminus further contribute to the generation of multiple isoforms. P53 family proteins can influence a plethora of cellular pathways mainly through the direct binding to specific DNA sequences known as response elements (REs), and the transactivation of the corresponding target genes. However, the transcriptional activation by P53 family members can be regulated at multiple levels, including the DNA topology at responsive promoters. Here, by using a yeast-based functional assay, we evaluated the influence that a G-quadruplex (G4) prone sequence adjacent to the p53 RE derived from the apoptotic PUMA target gene can exert on the transactivation potential of full-length and Nterminal truncated P53 family isoforms (wild-type and mutant). Our results show that the presence of a G4 prone sequence upstream or downstream of the P53 RE leads to significant changes in the relative activity of P53 family proteins, emphasizing the potential role of structural DNA features as modifiers of P53 family functions at target promoter sites

    The fading guardian: clinical relevance of TP53 null mutation in high-grade serous ovarian cancers

    Get PDF
    Backgroundwe evaluated the concordance between immunohistochemical p53 staining and TP53 mutations in a series of HGSOC. Moreover, we searched for prognostic differences between p53 overexpression and null expression groups.Methodspatients affected by HGSOC were included. For each case p53 immunohistochemical staining and molecular assay (Sanger sequencing) were performed. Kaplan-Meier survival analyses were undertaken to determine whether the type of TP53 mutation, or p53 staining pattern influenced overall survival (OS) and progression free survival (PFS).Results34 HGSOC were considered. All cases with a null immunohistochemical p53 expression (n=16) showed TP53 mutations (n=9 nonsense, n=4 in-frame deletion, n=2 splice, n=1 in-frame insertion). 16 out of 18 cases with p53 overexpression showed TP53 missense mutation. Follow up data were available for 33 out of 34 cases (median follow up time 15 month). We observed a significant reduction of OS in p53 null group [HR = 3.64, 95% CI 1.01-13.16].Conclusionimmunohistochemical assay is a reliable surrogate for TP53 mutations in most cases. Despite the small cohort and the limited median follow up, we can infer that HGSOC harboring p53 null mutations are a more aggressive subgroup

    p53 Transactivation and the Impact of Mutations, Cofactors and Small Molecules Using a Simplified Yeast-Based Screening System

    Get PDF
    The p53 tumor suppressor, which is altered in most cancers, is a sequence-specific transcription factor that is able to modulate the expression of many target genes and influence a variety of cellular pathways. Inactivation of the p53 pathway in cancer frequently occurs through the expression of mutant p53 protein. In tumors that retain wild type p53, the pathway can be altered by upstream modulators, particularly the p53 negative regulators MDM2 and MDM4. promoter, ii) single copy, chromosomally located p53-responsive and control luminescence reporters, iii) enhanced chemical uptake using modified ABC-transporters, iv) small-volume formats for treatment and dual-luciferase assays, and v) opportunities to co-express p53 with other cofactor proteins. This robust system can distinguish different levels of expression of WT and mutant p53 as well as interactions with MDM2 or 53BP1.We found that the small molecules Nutlin and RITA could both relieve the MDM2-dependent inhibition of WT p53 transactivation function, while only RITA could impact p53/53BP1 functional interactions. PRIMA-1 was ineffective in modifying the transactivation capacity of WT p53 and missense p53 mutations. This dual-luciferase assay can, therefore, provide a high-throughput assessment tool for investigating a matrix of factors that can influence the p53 network, including the effectiveness of newly developed small molecules, on WT and tumor-associated p53 mutants as well as interacting proteins
    corecore