60 research outputs found

    Investigation of the magnetic structure and crystal field states of pyrochlore antiferromagnet Nd2Zr2O7

    Get PDF
    We present synchrotron x-ray diffraction, neutron powder diffraction and time-of-flight inelastic neutron scattering measurements on the rare earth pyrochlore oxide Nd2Zr2O7 to study the ordered state magnetic structure and cystal field states. The structural characterization by high-resolution synchrotron x-ray diffraction confirms that the pyrochlore structure has no detectable O vacancies or Nd/Zr site mixing. The neutron diffraction reveals long range all-in/all-out antiferromagnetic order below T_N ~ 0.4 K with propagation vector k = (0 0 0) and an ordered moment of 1.26(2) \mu_B/Nd at 0.1 K. The ordered moment is much smaller than the estimated moment of 2.65 \mu_B/Nd for the local Ising ground state of Nd3+ (J=9/2) suggesting that the ordering is partially suppressed by quantum fluctuations. The strong Ising anisotropy is further confirmed by the inelastic neutron scattering data which reveals a well-isolated dipolar-octupolar type Kramers doublet ground state. The crystal field level scheme and ground state wavefunction have been determined.Comment: 12 pages, 15 figures, 2 table

    Magnetic ground state of the Ising-like antiferromagnet DyScO3_3

    Full text link
    We report the low temperature magnetic properties of the DyScO3_3 perovskite, which were characterized by means of single crystal and powder neutron scattering, and by magnetization measurements. Below TN=3.15T_{\mathrm{N}}=3.15 K, Dy3+^{3+} moments form an antiferromagnetic structure with an easy axis of magnetization lying in the abab-plane. The magnetic moments are inclined at an angle of ±28\sim\pm{28}^{\circ} to the bb-axis. We show that the ground state Kramers doublet of Dy3+^{3+} is made up of primarily ±15/2|\pm 15/2\rangle eigenvectors and well separated by crystal field from the first excited state at E1=24.9E_1=24.9 meV. This leads to an extreme Ising single-ion anisotropy, M/M0.05M_{\perp}/M_{\|}\sim{0.05}. The transverse magnetic fluctuations, which are proportional to M2/M2M^{2}_{\perp}/M^{2}_{\|}, are suppressed and only moment fluctuations along the local Ising direction are allowed. We also found that the Dy-Dy dipolar interactions along the crystallographic cc-axis are 2-4 times larger than in-plane interactions.Comment: 9 pages and 6 figures; to be published in Phys. Rev.

    Association of perinatal sentinel events, placental pathology and cerebral MRI in neonates with hypoxic-ischemic encephalopathy receiving therapeutic hypothermia

    Full text link
    OBJECTIVE: Placental pathology might provide information on the etiology of hypoxic-ischemic encephalopathy (HIE). To evaluate the association of perinatal sentinel events (PSE), placental pathology and cerebral MRI in cooled neonates with moderate/severe HIE. STUDY DESIGN: Retrospective analysis of 52 neonates with HIE registered in the Swiss National Asphyxia and Cooling Register 2011-2019. PSE and Non-PSE groups were tested for association with placental pathology. Placental pathology categories were correlated with MRI scores. RESULTS: In total, 14/52 neonates (27%) had a PSE, 38 neonates (73%) did not have a PSE. There was no evidence for an association of occurrence of PSE and placental pathologies (p = 0.364). Neonates with high MRI scores tended to have more often chronic pathologies in their placentas than acute pathologies or normal placentas (p = 0.067). CONCLUSION: Independent of the occurrence of PSE, chronic placental pathologies might be associated with more severe brain injury and needs further study

    Influence of Mg, Ag and Al substitutions on the magnetic excitations in the triangular-lattice antiferromagnet CuCrO2

    Full text link
    Magnetic excitations in CuCrO2_{2}, CuCr0.97_{0.97}Mg0.03_{0.03}O2_{2}, Cu0.85_{0.85}Ag0.15_{0.15}CrO2_{2}, and CuCr0.85_{0.85}Al0.15_{0.15}O2_{2} have been studied by powder inelastic neutron scattering to elucidate the element substitution effects on the spin dynamics in the Heisenberg triangular-lattice antiferromagnet CuCrO2_{2}. The magnetic excitations in CuCr0.97_{0.97}Mg0.03_{0.03}O2_{2} consist of a dispersive component and a flat component. Though this feature is apparently similar to CuCrO2_{2}, the energy structure of the excitation spectrum shows some difference from that in CuCrO2_{2}. On the other hand, in Cu0.85_{0.85}Ag0.15_{0.15}CrO2_{2} and CuCr0.85_{0.85}Al0.15_{0.15}O2_{2} the flat components are much reduced, the low-energy parts of the excitation spectra become intense, and additional low-energy diffusive spin fluctuations are induced. We argued the origins of these changes in the magnetic excitations are ascribed to effects of the doped holes or change of the dimensionality in the magnetic correlations.Comment: 7 pages, 5 figure

    Whole‐brain microscopy reveals distinct temporal and spatial efficacy of anti‐Aβ therapies

    Full text link
    Many efforts targeting amyloid-β (Aβ) plaques for the treatment of Alzheimer's Disease thus far have resulted in failures during clinical trials. Regional and temporal heterogeneity of efficacy and dependence on plaque maturity may have contributed to these disappointing outcomes. In this study, we mapped the regional and temporal specificity of various anti-Aβ treatments through high-resolution light-sheet imaging of electrophoretically cleared brains. We assessed the effect on amyloid plaque formation and growth in Thy1-APP/PS1 mice subjected to β-secretase inhibitors, polythiophenes, or anti-Aβ antibodies. Each treatment showed unique spatiotemporal Aβ clearance, with polythiophenes emerging as a potent anti-Aβ compound. Furthermore, aligning with a spatial-transcriptomic atlas revealed transcripts that correlate with the efficacy of each Aβ therapy. As observed in this study, there is a striking dependence of specific treatments on the location and maturity of Aβ plaques. This may also contribute to the clinical trial failures of Aβ-therapies, suggesting that combinatorial regimens may be significantly more effective in clearing amyloid deposition. Keywords: Alzheimer's disease; amyloid-beta; brain; light-sheet microscopy; tissue clearin

    Dipolar spin ice regime proximate to an all-in-all-out N\'{e}el ground state in the dipolar-octupolar pyrochlore Ce2_2Sn2_2O7_7

    Full text link
    The dipolar-octupolar (DO) pyrochlores, R2_2M2_2O7_7 (R = Ce, Sm, Nd), are key players in the search for realizable novel quantum spin liquid (QSL) states as a large parameter space within the DO pyrochlore phase diagram is theorized to host QSL states of both dipolar and octupolar nature. We present neutron diffraction measurements on newly synthesized hydrothermally-grown Ce2_2Sn2_2O7_7 powders that show a broad signal at low scattering vectors, reminiscent of a dipolar spin ice. This is strikingly different from previous neutron diffraction on powder samples grown from solid-state synthesis, which found diffuse scattering at high scattering vectors associated with magnetic octupoles. This raises the question about subtle crystalline structural differences and in particular the potential role of disorder that is present in the different samples. We quantify any differences through complementary neutron structure refinement and atomic PDF measurements but detect no oxidation or other crystallographic disorder in the hydrothermally-grown samples. To interpret the new diffuse scattering, we characterize the exchange interaction parameters in the near-neighbor XYZ model Hamiltonian associated with DO pyrochlores by fitting quantum numerical linked cluster expansions (NLCE) to heat capacity and magnetic susceptibility measurements, and classical Monte Carlo calculations to the diffuse neutron diffraction of the newly synthesized Ce2_2Sn2_2O7_7 samples. This places Ce2_2Sn2_2O7_7's ground state within the ordered dipolar all-in-all-out (AIAO) N\'{e}el phase with quantum Monte-Carlo calculations showing a transition to long-range order at temperatures below those accessed experimentally. We conclude that new hydrothermally-grown Ce2_2Sn2_2O7_7 samples host a finite-temperature proximate dipolar spin ice phase, above the expected transition to AIAO N\'{e}el order.Comment: 11 pages, 11 figure

    Collinge et al. reply

    Get PDF
    REPLYING TO C. Feeney et al. Nature 535, 10.1038/nature18602 (2016)

    CD36-mediated activation of endothelial cell apoptosis by an N-terminal recombinant fragment of thrombospondin-2 inhibits breast cancer growth and metastasis in vivo

    Get PDF
    Thus far the clinical benefits seen in breast cancer patients treated with drugs targeting the vascular endothelial growth factor (VEGF) pathway are only modest. Consequently, additional antiangiogenic approaches for treatment of breast cancer need to be investigated. Thrombospondin-2 (TSP-2) has been shown to inhibit tumor growth and angiogenesis with a greater potency than the related molecule TSP-1. The systemic effects of TSP-2 on tumor metastasis and the underlying molecular mechanisms of the antiangiogenic activity of TSP-2 have remained poorly understood. We generated a recombinant fusion protein consisting of the N-terminal region of TSP-2 and the IgG-Fc1 fragment (N-TSP2-Fc) and could demonstrate that the antiangiogenic activity of N-TSP2-Fc is dependent on the CD36 receptor. We found that N-TSP2-Fc inhibited VEGF-induced tube formation of human dermal microvascular endothelial cells (HDMEC) on matrigel in vitro and that concurrent incubation of anti-CD36 antibody with N-TSP2-Fc resulted in tube formation that was comparable to untreated control. N-TSP2-Fc potently induced apoptosis of HDMEC in vitro in a CD36-dependent manner. Moreover, we could demonstrate a CD36 receptor-mediated loss of mitochondrial membrane potential and activation of caspase-3 in HDMEC in vitro. Daily intraperitoneal injections of N-TSP2-Fc resulted in a significant inhibition of the growth of human MDA-MB-435 and MDA-MB-231 tumor cells grown in the mammary gland of immunodeficient nude mice and in reduced tumor vascularization. Finally, increased serum concentrations of N-TSP2-Fc significantly inhibited regional metastasis to lymph nodes and distant metastasis to lung as shown by quantitative real-time alu PCR. These results identify N-TSP2-Fc as a potent systemic inhibitor of tumor metastasis and provide strong evidence for an important role of the CD36 receptor in mediating the antiangiogenic activity of TSP-2
    corecore