1,631 research outputs found

    A common stochastic process rules gamma-ray burst prompt emission and X-ray flares

    Get PDF
    Prompt gamma-ray and early X-ray afterglow emission in gamma-ray bursts (GRBs) are characterized by a bursty behavior and are often interspersed with long quiescent times. There is compelling evidence that X-ray flares are linked to prompt gamma-rays. However, the physical mechanism that leads to the complex temporal distribution of gamma-ray pulses and X-ray flares is not understood. Here we show that the waiting time distribution (WTD) of pulses and flares exhibits a power-law tail extending over 4 decades with index ~2 and can be the manifestation of a common time-dependent Poisson process. This result is robust and is obtained on different catalogs. Surprisingly, GRBs with many (>=8) gamma-ray pulses are very unlikely to be accompanied by X-ray flares after the end of the prompt emission (3.1 sigma Gaussian confidence). These results are consistent with a simple interpretation: an hyperaccreting disk breaks up into one or a few groups of fragments, each of which is independently accreted with the same probability per unit time. Prompt gamma-rays and late X-ray flares are nothing but different fragments being accreted at the beginning and at the end, respectively, following the very same stochastic process and likely the same mechanism.Comment: 11 pages, 7 figures, accepted by Ap

    The hard X-ray tails in neutron star low mass X-ray binaries: BeppoSAX observations and possible theoretical explanation of the GX 17+2 case

    Get PDF
    We report results of a new spectral analysis of two BeppoSAX observations of the Z source GX 17+2. In one of the two observations the source exhibits a powerlaw-like hard (> 30 keV) X-ray tail which was described in a previous work by a hybrid Comptonization model. Recent high-energy observations with INTEGRAL of a sample of Low Mass X-Ray Binaries including both Z and atoll classes have shown that bulk (dynamical) Comptonization of soft photons can be a possible alternative mechanism for producing hard X-ray tails in such systems. We start from the INTEGRAL results and we exploit the broad-band capability of BeppoSAX to better investigate the physical processes at work. We use GX 17+2 as a representative case. Moreover, we suggest that weakening (or disappearance) of the hard X-ray tail can be explained by increasing radiation pressure originated at the surface of the neutron star (NS). As a result the high radiation pressure stops the bulk inflow and consequently this radiation feedback of the NS surface leads to quenching the bulk Comptonization.Comment: 6 pages, 3 figures, Accepted for publication in Ap

    Unveiling GRB hard X-ray afterglow emission with Simbol-X

    Full text link
    Despite the enormous progress occurred in the last 10 years, the Gamma-Ray Bursts (GRB) phenomenon is still far to be fully understood. One of the most important open issues that have still to be settled is the afterglow emission above 10 keV, which is almost completely unexplored. This is due to the lack of sensitive enough detectors operating in this energy band. The only detection, by the BeppoSAX/PDS instrument (15-200 keV), of hard X-ray emission from a GRB (the very bright GRB 990123), combined with optical and radio observations, seriously challenged the standard scenario in which the dominant mechanism is synchrotron radiation produced in the shock of a ultra-relativistic fireball with the ISM, showing the need of a substantial revision of present models. In this respect, thanks to its unprecedented sensitivity in the 10-80 keV energy band, Simbol-X, through follow-up observations of bright GRBs detected and localized by GRB dedicated experiments that will fly in the >2010 time frame, will provide an important breakthrough in the GRB field.Comment: 4 pages, 2 figures. Paper presented at "Simbol-X: the hard X-ray universe in focus", held in Bologna, Italy, on 14-16 May 2007. To be published in Memorie della Societa' Astronomica Italian

    GRB 970228 Revisited: Evidence for a Supernova in the Light Curve and La te Spectral Energy Distribution of the Afterglow

    Get PDF
    At the time of its discovery, the optical and X-ray afterglow of GRB 970228 appeared to be a ringing endorsement of the previously untried relativistic fireball model of gamma-ray burst (GRB) afterglows, but now that nearly a dozen optical afterglows to GRBs have been observed, the wavering light curve and reddening spectrum of this afterglow make it perhaps the most difficult of the observed afterglows to reconcile with the fireball model. In this Letter, we argue that this afterglow's unusual temporal and spectral properties can be attributed to a supernova that overtook the light curve nearly two weeks after the GRB. This is the strongest case yet for a GRB/supernova connection. It strengthens the case that a supernova also dominated the late afterglow of GRB 980326, and the case that GRB 980425 is related to SN 1998bw.Comment: Accepted to The Astrophysical Journal (Letters), 14 pages, LaTe

    Electronic Structure of N<sub>2</sub>P<sub>2</sub> Four-Membered Rings

    No full text
    The biradicaloid character of the ground-state structures of N2P2 rings is studied by using the high-level ab initio multiconfigurational CASPT2/CASSCF method. In order to obtain accurate descriptors, we combine two criteria: 1) singlet–triplet energy gaps and 2) relative values of the occupation numbers for bonding and antibonding orbitals associated with the radical sites. The singlet–triplet energy gaps, the occupation numbers of antibonding-like orbitals, and the weights of the main configuration state functions (CSFs) of the ground-state wavefunctions, that is, Ψ(1A1), are used to derive the biradicaloid character that ranges from 10–15 %

    Probing phase coexistence and stabilization of the spin-ordered ferrimagnetic state by Calcium addition in the YBa_{1-x}Ca_{x}Co_{2}O_{5.5} layered cobaltites using neutron diffraction

    Get PDF
    In this article we study the effects of a partial substitution of Ba with the smaller cation Ca in the layered cobaltites YBaCo_2O_{5+\delta} for \delta \approx 0.5. Neutron thermodiffractograms are reported for the compounds YBa_{0.95}Ca_{0.05}Co_2O_{5.5} (x_{Ca}=0.05) and YBa_{0.90}Ca_{0.10}Co_2O_{5.5} (x_{Ca}=0.10) in the temperature range 20 K \leq T \leq 300 K, as well as high resolution neutron diffraction experiments at selected temperatures for the samples x_{Ca}=0.05, x_{Ca}=0.10 and the parent compound x_{Ca}=0. We have found the magnetic properties to be strongly affected by the cationic substitution. Although the "122" perovskite structure seems unaffected by Ca addition, the magnetic arrangements of Co ions are drastically modified: the antiferromagnetic (AFM) long-range order is destroyed, and a ferrimagnetic phase with spin state order is stabilized below T \sim 290 K. For the sample with x_{Ca}=0.05 a fraction of AFM phase coexists with the ferrimagnetic one below T \sim 190 K, whereas for x_{Ca}=0.10 the AFM order is completely lost. The systematic refinement of the whole series has allowed for a better understanding of the observed low-temperature diffraction patterns of the parent compound, YBaCo_2O_{5.5}, which had not yet been clarified. A two-phase scenario is proposed for the x_{Ca}=0 compound which is compatible with the phase coexistence observed in the x_{Ca}=0.05 sample

    Physical parameters of GRB 970508 and GRB 971214 from their afterglow synchrotron emission

    Get PDF
    We have calculated synchrotron spectra of relativistic blast waves, and find predicted characteristic frequencies that are more than an order of magnitude different from previous calculations. For the case of an adiabatically expanding blast wave, which is applicable to observed gamma-ray burst (GRB) afterglows at late times, we give expressions to infer the physical properties of the afterglow from the measured spectral features. We show that enough data exist for GRB970508 to compute unambiguously the ambient density, n=0.03/cm**3, and the blast wave energy per unit solid angle, E=3E52 erg/4pi sr. We also compute the energy density in electrons and magnetic field. We find that they are 12% and 9%, respectively, of the nucleon energy density and thus confirm for the first time that both are close to but below equipartition. For GRB971214, we discuss the break found in its spectrum by Ramaprakash et al. (1998). It can be interpreted either as the peak frequency or as the cooling frequency; both interpretations have some problems, but on balance the break is more likely to be the cooling frequency. Even when we assume this, our ignorance of the self-absorption frequency and presence or absence of beaming make it impossible to constrain the physical parameters of GRB971214 very well.Comment: very strongly revised analysis of GRB971214 and discussion, submitted to ApJ, 11 pages LaTeX, 4 figures, uses emulateapj.sty (included
    • …
    corecore