1,118 research outputs found

    Spinocerebellar Ataxia Type 6.

    Get PDF

    Leukocyte telomere shortening in Huntington's disease

    Get PDF
    Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by an expanded CAG repeat. Though symptom onset commonly occurs at midlife and inversely correlates with the CAG repeat expansion, age at clinical onset and progression rate are variable. In the present study we investigated the relationship between leukocyte telomere length (LTL) and HD development. LTL was measured by real-time PCR in manifest HD patients (HD, n = 62), pre-manifest HD patients (pre-HD, n = 38), and age-matched controls (n = 76). Significant LTL differences were observed between the three groups (p < .0001), with LTL values in the order: HD < pre-HD < controls. The relationship between LTL and age was different in the three groups. An inverse relationship between mean LTL and CAG repeat number was found in the pre-HD (p = .03). The overall data seem to indicate that after age 30 years, LT begins to shorten markedly in pre-HD patients according to CAG number and increasing age, up to the values observed in HD. This very suggestive picture allowed us to hypothesize that in pre-manifest HD, LTL could be a measure of time to clinical HD onset. The possible use of LTL as a reliable biomarker to track HD development and progression was evaluated and discussed

    Regulation of the expression of the Kluyveromyces lactis PDC1 gene: carbon source-responsive elements and autoregulation

    Get PDF
    The yeast Kluyveromyces lactis has a single structural gene coding for pyruvate decarboxylase (KIPDC1). In order to study the regulation of the expression of KIPDC1, we have sequenced (EMBL Accession No. Y15435) its promoter and have fused the promoter to the reporter gene lacZ from E. coli. Transcription analysis in a Klpdc1 delta strain showed that KIPDC1 expression is subject to autoregulation. The PDC1 gene from Saccharomyces cerevisiae was able to complement the Rag- phenotype of the Klpdc1 delta mutant strain and it could also repress transcription of the KIPDC1-lacZ fusion on glucose. A deletion analysis of the promoter region was performed to study carbon source-dependent regulation and revealed that at least two cis-acting regions are necessary for full induction of gene expression on glucose. Other cis-elements mediate repression on ethanol

    Novel homozygous GBA2 mutation in a patient with complicated spastic paraplegia

    Get PDF
    Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurological disorders characterized primarily by a pyramidal syndrome with lower limb spasticity, which can manifest as pure HSP or associated with a number of neurological or non-neurological signs (i.e., complicated HSPs). The clinical variability of HSPs is associated with a wide genetic heterogeneity, with more than eighty causative genes known. Recently, next generation sequencing (NGS) has allowed increasing genetic definition in such a heterogeneous group of disorders. We report on a 56- year-old man affected by sporadic complicated HSP consisting of a pyramidal syndrome, cerebellar ataxia, congenital cataract, pes cavus, axonal sensory-motor peripheral neuropathy and cognitive decline. Brain MRI showed cerebellar atrophy and thin corpus callosum. By NGS we found a novel homozygous biallelic c.452-1G > C mutation in the b-glucosidase 2 gene (GBA2), known to be causative for autosomal recessive hereditary spastic paraplegia type 46 (SPG46). The rarity of this inherited form besides reporting on a novel mutation, expands the genetic and clinical spectrum of SPG46 related HSP

    Dramatically different levels of cacna1a gene expression between pre-weaning wild type and leaner mice

    Get PDF
    Loss of function mutations of the CACNA1A gene, coding for the α1A subunit of P/Q type voltage-gated calcium channel (Ca(V)2.1), are responsible for Episodic Ataxia type 2 (EA2), an autosomal dominant disorder. A dominant negative effect of the EA2 mutated protein, rather than a haploinsufficiency mechanism, has been hypothesised both for protein-truncating and missense mutations. We analysed the cacna1a mRNA expression in leaner mice carrying a cacna1a mutation leading to a premature stop codon. The results showed a very low mutant mRNA expression compared to the wild type allele. Although the mutant mRNA slightly increases with age, its low level is likely due to degradation by nonsense mediated decay, a quality control mechanism that selectively degrades mRNA harbouring premature stop codons. These data have implications for EA2 in humans, suggesting a haploinsufficiency mechanism at least for some of the CACNA1A mutations leading to a premature stop codon

    Effects of Sapropterin on Endothelium-Dependent Vasodilation in Patients With CADASIL: A Randomized Controlled Trial

    Get PDF
    Background and Purpose-Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a rare autosomal dominant disorder caused by NOTCH3 mutations, is characterized by vascular smooth muscle and endothelial cells abnormalities, altered vasoreactivity, and recurrent lacunar infarcts. Vasomotor function may represent a key factor for disease progression. Tetrahydrobiopterin, essential cofactor for nitric oxide synthesis in endothelial cells, ameliorates endothelial function. We assessed whether supplementation with sapropterin, a synthetic tetrahydrobiopterin analog, improves endothelium-dependent vasodilation in CADASIL patients

    Is the Oxidant/Antioxidant Status Altered in CADASIL Patients?

    Get PDF
    The altered aggregation of proteins in non-native conformation is associated with endoplasmic reticulum derangements, mitochondrial dysfunction and excessive production of reactive oxygen species. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary systemic vasculopathy, caused by NOTCH3 mutations within the receptor extracellular domain, that lead to abnormal accumulation of the mutated protein in the vascular wall. NOTCH3 misfolding could cause free radicals increase also in CADASIL. Aim of the study was to verify whether CADASIL patients have increased oxidative stress compared to unrelated healthy controls. We enrolled 15 CADASIL patients and 16 gender- and age-matched healthy controls with comparable cardiovascular risk factor. Blood and plasma reduced and total aminothiols (homocysteine, cysteine, glutathione, cysteinylglycine) were measured by HPLC and plasma 3- nitrotyrosine by ELISA. Only plasma reduced cysteine (Pr-Cys) and blood reduced glutathione (Br-GSH) concentrations differed between groups: in CADASIL patients Br-GSH levels were higher (p = 0.019) and Pr-Cys lower (p = 0.010) than in controls. No correlation was found between Br-GSH and Pr-Cys either in CADASIL patients (rho 0.25, P=0.36) or in controls (rho -0.15, P=0.44). Conversely, 3- nitrotyrosine values were similar in CADASIL and healthy subjects (p = 0.82). The high levels of antioxidant molecules and low levels of oxidant mediators found in our CADASIL population might either be expression of an effective protective action against free radical formation at an early stage of clinical symptoms or they could suggest that oxidative stress is not directly involved in the pathogenesis of CADASIL

    A fine physical map of the CACNA1A gene region on 19p13.1-p13.2 chromosome

    Get PDF
    The P/Q-type Ca(2+) channel alpha(1A) subunit gene (CACNA1A) was cloned on the short arm of chromosome 19 between the markers D19S221 and D19S179 and found to be responsible for Episodic Ataxia type 2, Familial Hemiplegic Migraine and Spinocerebellar Ataxia type 6. This region was physically mapped by 11 cosmid contigs spanning about 1. 4Mb, corresponding to less than 70% of the whole region. The cosmid contig used to characterize the CACNA1A gene accounted only for the coding region of the gene lacking, therefore, the promoter and possible regulation regions. The present study improves the physical map around and within the CACNA1A by giving a complete cosmid or BAC contig coverage of the D19S221-D19S179 interval. A number of new STSs, whether polymorphic or not, were characterized and physically mapped within this region. Four ESTs were also assigned to cosmids belonging to specific contigs

    Episodic ataxias: Faux or real?

    Get PDF
    The term Episodic Ataxias (EA) was originally used for a few autosomal dominant diseases, characterized by attacks of cerebellar dysfunction of variable duration and frequency, often accompanied by other ictal and interictal signs. The original group subsequently grew to include other very rare EAs, frequently reported in single families, for some of which no responsible gene was found. The clinical spectrum of these diseases has been enormously amplified over time. In addition, episodes of ataxia have been described as phenotypic variants in the context of several different disorders. The whole group is somewhat confused, since a strong evidence linking the mutation to a given phenotype has not always been established. In this review we will collect and examine all instances of ataxia episodes reported so far, emphasizing those for which the pathophysiology and the clinical spectrum is best defined

    Impaired vasoreactivity in mildly disabled CADASIL patients

    Get PDF
    Background and purpose CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) is a rare genetic disease caused by NOTCH3 gene mutations. A dysfunction in vasoreactivity has been proposed as an early event in the pathogenesis of the disease. The aim of this study was to verify whether endothelium dependent and/or independent function is altered in CADASIL patients with respect to controls. Methods Vasoreactivity was studied by a non-invasive pletismographic method in 49 mildly disabled CADASIL patients (30e65 years, 58% male, Rankin scale #2) and 25 controls. Endothelium dependent vasodilatation was assessed by reactive hyperaemia (flow mediated dilationeperipheral arterial tone (FMD-PAT)) and endothelium independent vasoreactivity by glyceryl trinitrate (GTN) administration (GTN-PAT). Results Patients and controls showed comparable age, gender and cardiovascular risk factor distribution. GTN-PAT values were significantly lower in CADASIL patients (1.54 (1.01 to 2.25)) than in controls (1.89 (1.61 to 2.59); p?0.041). FMD-PAT scores did not differ between patients and controls (1.88 (1.57 to 2.43) vs 2.08 (1.81 to 2.58); p?0.126) but 17 CADASIL patients (35%) had FMDPAT scores below the fifth percentile of controls. FMD-PAT and GTN-PAT values correlated both in controls (r?0.648, p<0.001) and CADASIL patients (r?0.563, p<0.001). By multivariable logistic regression for clinical and laboratory variables, only GTN-PAT (OR 0.39, 95% CI 0.15 to 0.97; p?0.044) was independently associated with FMD-PAT below the fifth percentile in CADASIL patients. Conclusions The impaired vasoreactivity observed in CADASIL patients highlights the fact that both endothelial and smooth muscle functional alterations may already be present in mildly disabled subjects. The improvement in vascular function could be a new target for pharmacological trials in CADASIL patients
    corecore