38 research outputs found

    Many Masses on One Stroke: Economic Computation of Quark Propagators

    Get PDF
    The computational effort in the calculation of Wilson fermion quark propagators in Lattice Quantum Chromodynamics can be considerably reduced by exploiting the Wilson fermion matrix structure in inversion algorithms based on the non-symmetric Lanczos process. We consider two such methods: QMR (quasi minimal residual) and BCG (biconjugate gradients). Based on the decomposition M/κ=1/κ−DM/\kappa={\bf 1}/\kappa-D of the Wilson mass matrix, using QMR, one can carry out inversions on a {\em whole} trajectory of masses simultaneously, merely at the computational expense of a single propagator computation. In other words, one has to compute the propagator corresponding to the lightest mass only, while all the heavier masses are given for free, at the price of extra storage. Moreover, the symmetry γ5 M=M† γ5\gamma_5\, M= M^{\dagger}\,\gamma_5 can be used to cut the computational effort in QMR and BCG by a factor of two. We show that both methods then become---in the critical regime of small quark masses---competitive to BiCGStab and significantly better than the standard MR method, with optimal relaxation factor, and CG as applied to the normal equations.Comment: 17 pages, uuencoded compressed postscrip

    Adipocytokines and autoimmunity

    Get PDF

    Vereinfachte Bewertung von Umweltbelastungen

    Get PDF
    Mensch und Umwelt sind vielfältigen Umweltbelastungen ausgesetzt. Mit integriertenMethoden können auch Auswirkungen betrachtet werden, die in klassischen Ökobilanzen bisher nicht berücksichtigt wurden

    The Adipokine network in rheumatic joint diseases

    Get PDF
    Rheumatic diseases encompass a diverse group of chronic disorders that commonly affect musculoskeletal structures. Osteoarthritis (OA) and rheumatoid arthritis (RA) are the two most common, leading to considerable functional limitations and irreversible disability when patients are unsuccessfully treated. Although the specific causes of many rheumatic conditions remain unknown, it is generally accepted that immune mechanisms and/or uncontrolled inflammatory responses are involved in their etiology and symptomatology. In this regard, the bidirectional communication between neuroendocrine and immune system has been demonstrated to provide a homeostatic network that is involved in several pathological conditions. Adipokines represent a wide variety of bioactive, immune and inflammatory mediators mainly released by adipocytes that act as signal molecules in the neuroendocrine-immune interactions. Adipokines can also be synthesized by synoviocytes, osteoclasts, osteoblasts, chondrocytes and inflammatory cells in the joint microenvironment, showing potent modulatory properties on different effector cells in OA and RA pathogenesis. Effects of adiponectin, leptin, resistin and visfatin on local and systemic inflammation are broadly described. However, more recently, other adipokines, such as progranulin, chemerin, lipocalin-2, vaspin, omentin-1 and nesfatin, have been recognized to display immunomodulatory actions in rheumatic diseases. This review highlights the latest relevant findings on the role of the adipokine network in the pathophysiology of OA and RA

    Free Fatty Acids in Bone Pathophysiology of Rheumatic Diseases

    Get PDF
    Obesity—in which free fatty acid (FFA) levels are chronically elevated—is a known risk factor for different rheumatic diseases, and obese patients are more likely to develop osteoarthritis (OA) also in non-weight-bearing joints. These findings suggest that FFA may also play a role in inflammation-related joint damage and bone loss in rheumatoid arthritis (RA) and OA. Therefore, the objective of this study was to analyze if and how FFA influence cells of bone metabolism in rheumatic diseases. When stimulated with FFA, osteoblasts from RA and OA patients secreted higher amounts of the proinflammatory cytokine interleukin (IL)-6 and the chemokines IL-8, growth-related oncogene α, and monocyte chemotactic protein 1. Receptor activator of nuclear factor kappa B ligand (RANKL), osteoprotegerin, and osteoblast differentiation markers were not influenced by FFA. Mineralization activity of osteoblasts correlated inversely with the level of FFA-induced IL-6 secretion. Expression of the Wnt signaling molecules, axin-2 and β-catenin, was not changed by palmitic acid (PA) or linoleic acid (LA), suggesting no involvement of the Wnt signaling pathway in FFA signaling for osteoblasts. On the other hand, Toll-like receptor 4 blockade significantly reduced PA-induced IL-8 secretion by osteoblasts, while blocking Toll-like receptor 2 had no effect. In osteoclasts, IL-8 secretion was enhanced by PA and LA particularly at the earliest time point of differentiation. Differences were observed between the responses of RA and OA osteoclasts. FFA might therefore represent a new molecular factor by which adipose tissue contributes to subchondral bone damage in RA and OA. In this context, their mechanisms of action appear to be dependent on inflammation and innate immune system rather than Wnt-RANKL pathways

    A Gammaherpesviral Internal Repeat Contributes to Latency Amplification

    Get PDF
    BACKGROUND: Gammaherpesviruses cause important infections of humans, in particular in immunocompromised patients. The genomes of gammaherpesviruses contain variable numbers of internal repeats whose precise role for in vivo pathogenesis is not well understood. METHODOLOGY/PRINCIPAL FINDINGS: We used infection of laboratory mice with murine gammaherpesvirus 68 (MHV-68) to explore the biological role of the 40 bp internal repeat of MHV-68. We constructed several mutant viruses partially or completely lacking this repeat. Both in vitro and in vivo, the loss of the repeat did not substantially affect lytic replication of the mutant viruses. However, the extent of splenomegaly, which is associated with the establishment of latency, and the number of ex vivo reactivating and genome positive splenocytes were reduced. Since the 40 bp repeat is part of the hypothetical open reading frame (ORF) M6, it might function as part of M6 or as an independent structure. To differentiate between these two possibilities, we constructed an N-terminal M6STOP mutant, leaving the repeat structure intact but rendering ORF M6 unfunctional. Disruption of ORF M6 did neither affect lytic nor latent infection. In contrast to the situation in lytically infected NIH3T3 cells, the expression of the latency-associated genes K3 and ORF72 was reduced in the latently infected murine B cell line Ag8 in the absence of the 40 bp repeat. CONCLUSIONS/SIGNIFICANCE: These data suggest that the 40 bp repeat contributes to latency amplification and might be involved in the regulation of viral gene expression

    IGFBP-2 Mediated Changes in Gene Expression and Effects on Apoptosis in Human Tumor Cell Lines

    No full text
    IGFBP-2 (Insulin-Like Growth Factor Binding Protein-2) ist Teil des IGF-Systems und spielt als solches eine wichtige Rolle bei der Regulation vieler zellulärer und physiologischer Vorgänge. Auch in der Tumorbiologie besitzt IGFBP-2 eine bedeutende Rolle. Auf der Grundlage dieser Beobachtungen stellte sich die Frage, auf welche Art und Weise IGFBP-2 an der Vermittlung dieser Effekte beteiligt ist. Dieser Frage wurde im Rahmen wurde im Rahmen dieser Doktorarbeit nachgegangen. Des Weiteren wurde untersucht, ob IGFBP-2 Einfluss auf die Apoptose von humanen Tumorzelllinien nimmt.IGFBP-2 (Insulin-Like Growth Factor Binding Protein-2) is part of the IGF system and as such plays an important role in regulating many cellular and physiological processes. Besides, IGFBP-2 plays an important role in tumor biology. These observations brought up the question how IGFBP-2 contributes to mediating these effects. This question was addressed in this work. Additionally, experiments were performed trying to find out whether IGFBP-2 has an effect on the apoptosis of human tumor cell lines

    Editorial zum Themenheft „Stoffwechsel“

    No full text

    Adipokines and Autoimmunity in Inflammatory Arthritis

    No full text
    Adipokines are adipose tissue-derived factors not only playing an important role in metabolism but also influencing other central processes of the body, such as inflammation. In autoimmune diseases, adipokines are involved in inflammatory pathways affecting different cell types. Many rheumatic diseases belong to the group of autoimmune diseases, for example rheumatoid arthritis (RA) and psoriatic arthritis. Due to the autoimmune responses, a chronic inflammatory milieu develops, which affects the whole body, including adipose tissue. Metabolic alterations such as obesity influence inflammatory responses in autoimmune diseases. Adipokines are bioactive mediators mainly produced by adipose tissue. Due to alterations of systemic adipokine levels, their role as biomarkers with diagnostic potential has been suggested in the context of rheumatic diseases. In the affected joints of RA patients, different synoviocytes but also osteoclasts, osteoblasts, and chondrocytes produce several adipokines, contributing to the unique inflammatory microenvironment. Adipokines have been shown to be potent modulatory effectors on different cell types of the immune system but also local cells in synovial tissue, cartilage, and bone. This review highlights the most recent findings on the role of adipokines in the pathophysiology of inflammatory arthritis with a distinct focus on RA in the quickly developing research field

    Adipokines and Autoimmunity in Inflammatory Arthritis

    No full text
    Adipokines are adipose tissue-derived factors not only playing an important role in metabolism but also influencing other central processes of the body, such as inflammation. In autoimmune diseases, adipokines are involved in inflammatory pathways affecting different cell types. Many rheumatic diseases belong to the group of autoimmune diseases, for example rheumatoid arthritis (RA) and psoriatic arthritis. Due to the autoimmune responses, a chronic inflammatory milieu develops, which affects the whole body, including adipose tissue. Metabolic alterations such as obesity influence inflammatory responses in autoimmune diseases. Adipokines are bioactive mediators mainly produced by adipose tissue. Due to alterations of systemic adipokine levels, their role as biomarkers with diagnostic potential has been suggested in the context of rheumatic diseases. In the affected joints of RA patients, different synoviocytes but also osteoclasts, osteoblasts, and chondrocytes produce several adipokines, contributing to the unique inflammatory microenvironment. Adipokines have been shown to be potent modulatory effectors on different cell types of the immune system but also local cells in synovial tissue, cartilage, and bone. This review highlights the most recent findings on the role of adipokines in the pathophysiology of inflammatory arthritis with a distinct focus on RA in the quickly developing research field
    corecore