1,517 research outputs found

    Unsteady two dimensional airloads acting on oscillating thin airfoils in subsonic ventilated wind tunnels

    Get PDF
    The numerical calculation of unsteady two dimensional airloads which act upon thin airfoils in subsonic ventilated wind tunnels was studied. Neglecting certain quadrature errors, Bland's collocation method is rigorously proved to converge to the mathematically exact solution of Bland's integral equation, and a three way equivalence was established between collocation, Galerkin's method and least squares whenever the collocation points are chosen to be the nodes of the quadrature rule used for Galerkin's method. A computer program displayed convergence with respect to the number of pressure basis functions employed, and agreement with known special cases was demonstrated. Results are obtained for the combined effects of wind tunnel wall ventilation and wind tunnel depth to airfoil chord ratio, and for acoustic resonance between the airfoil and wind tunnel walls. A boundary condition is proposed for permeable walls through which mass flow rate is proportional to pressure jump

    Numerical equation of state and other scaling functions from an improved three-dimensional Ising model

    Full text link
    We study an improved three-dimensional Ising model with external magnetic field near the critical point by Monte Carlo simulations. From our data we determine numerically the universal scaling functions of the magnetization, that is the equation of state, of the susceptibility and of the correlation length. In order to normalize the scaling functions we calculate the critical amplitudes of the three observables on the critical line, the phase boundary and the critical isochore. These amplitudes lead to the universal ratios C^+/C^-=4.756(28), R_{chi}=1.723(13), Q_c=0.326(3) and Q_2=1.201(10). We find excellent agreement of the data with the parametric representation of the asymptotic equation of state as found by field theory methods. The comparison of the susceptibility data to the corresponding scaling function shows a marginal difference in the symmetric phase, which can be explained by the slightly different value for R_{chi} used in the parametrization. The shape of the correlation-length-scaling function is similar to the one of the susceptibility, as expected from earlier parametrizations. The peak positions of the two scaling functions are coinciding within the error bars.Comment: 27 pages, 14 Ps-figures, Latex2e, 10 pages added, including the scaling function of the correlation length, to appear in Nucl. Phys.

    Top transport in electroweak baryogenesis

    Get PDF
    In non-supersymmetric models of electroweak baryogenesis the top quark plays a crucial role. Its CP-violating source term can be calculated in the WKB approximation. We point out how to resolve certain discrepancies between computations starting from the Dirac equation and the Schwinger--Keldysh formalism. We also improve on the transport equations, keeping the W-scatterings at finite rate. We apply these results to a model with one Higgs doublet, augmented by dimension-6 operators, where our refinements lead to an increase in the baryon asymmetry by a factor of up to about 5.Comment: 17 pages, 3 figures, references adde

    Two dimensional aerodynamic interference effects on oscillating airfoils with flaps in ventilated subsonic wind tunnels

    Get PDF
    The numerical computation of unsteady airloads acting upon thin airfoils with multiple leading and trailing-edge controls in two-dimensional ventilated subsonic wind tunnels is studied. The foundation of the computational method is strengthened with a new and more powerful mathematical existence and convergence theory for solving Cauchy singular integral equations of the first kind, and the method of convergence acceleration by extrapolation to the limit is introduced to analyze airfoils with flaps. New results are presented for steady and unsteady flow, including the effect of acoustic resonance between ventilated wind-tunnel walls and airfoils with oscillating flaps. The computer program TWODI is available for general use and a complete set of instructions is provided

    External field dependence of the correlation lengths in the three-dimensional O(4) model

    Full text link
    We investigate numerically the transverse and longitudinal correlation lengths of the three-dimensional O(4) model as a function of the external field H. In the low-temperature phase we verify explicitly the H^{-1/2}-dependence of the transverse correlation length, which is expected due to the Goldstone modes of the model. On the critical line we find the universal amplitude ratio xi^c_T / xi^c_L = 1.99(1). From our data we derive the universal scaling function for the transverse correlation length. The H-dependencies of the correlation lengths in the high temperature phase are discussed and shown to be in accord with the scaling functions.Comment: 3 pages, 4 figures, Lattice2003(higgs) contribution, espcrc2.st

    Four GTPases Differentially Regulate the Sec7 Arf-GEF to Direct Traffic at the trans-Golgi Network

    Get PDF
    SummaryTraffic through the Golgi complex is controlled by small GTPases of the Arf and Rab families. Guanine nucleotide exchange factor (GEF) proteins activate these GTPases to control Golgi function, yet the full assortment of signals regulating these GEFs is unknown. The Golgi Arf-GEF Sec7 and the homologous BIG1/2 proteins are effectors of the Arf1 and Arl1 GTPases. We demonstrate that Sec7 is also an effector of two Rab GTPases, Ypt1 (Rab1) and Ypt31/32 (Rab11), signifying unprecedented signaling crosstalk between GTPase pathways. The molecular basis for the role of Ypt31/32 and Rab11 in vesicle formation has remained elusive. We find that Arf1, Arl1, and Ypt1 primarily affect the membrane localization of Sec7, whereas Ypt31/32 exerts a dramatic stimulatory effect on the nucleotide exchange activity of Sec7. The convergence of multiple signaling pathways on a master regulator reveals a mechanism for balancing incoming and outgoing traffic at the Golgi

    Baryogenesis in the Two-Higgs Doublet Model

    Get PDF
    We consider the generation of the baryon asymmetry in the two-Higgs doublet model. Investigating the thermal potential in the presence of CP violation, as relevant for baryogenesis, we find a strong first-order phase transition if the extra Higgs states are heavier than about 300 GeV. The mass of the lightest Higgs can be as large as about 200 GeV. We compute the bubble wall properties, including the profile of the relative complex phase between the two Higgs vevs. The baryon asymmetry is generated by top transport, which we treat in the WKB approximation. We find a baryon asymmetry consistent with observations. The neutron electric dipole moment is predicted to be larger than about 10^{-27}ecm and can reach the current experimental bound. Low values of tan\beta are favored.Comment: 25 pages, 7 figure

    Electroweak Baryogenesis with dimension-6 Higgs interactions

    Full text link
    We present the computation of the baryon asymmetry in the SM amplified by dimension-6 Higgs interactions using the WKB approximation. Analyzing the one-loop potential it turns out that the phase transition is strongly first order in a wide range of the parameters. It is ensured not to wash out the net baryon number gained previously even for Higgs masses up to at least 170 GeV. In addition dimension-6 operators induce new sources of CP violation. Novel source terms which enhance the generated baryon asymmetry emerge in the transport equations. This model predicts a baryon to entropy ratio close to the observed value for a large part of the parameter space.Comment: 10 pages, 4 figures, Talk given at the 8th International Moscow School of Physic

    High frequency guided wave propagation in monocrystalline silicon wafers

    Get PDF
    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafe
    • …
    corecore