1,144 research outputs found

    A genus at risk: Predicted current and future distribution of all three Lagopus species reveal sensitivity to climate change and efficacy of protected areas

    Get PDF
    Aim: Cold-adapted species are considered vulnerable to climate change. However, our understanding of how climate-induced changes in habitat and weather patterns will influence habitat suitability remains poorly understood, particularly for species at high latitudes or elevations. Here, we assessed potential future distributions for a climate-sensitive genus, Lagopus, and the effectiveness of protected areas in tracking shifting distributions. Location: British Columbia, Canada. Methods: Using community science observations from 1970 to 2020, we built species distribution models for white-tailed (L. leucura), rock (L. muta) and willow ptarmigan (L. lagopus) across British Columbia, a globally unique region harbouring all three ptarmigan species. We assessed the impact of climate (direct) and climate-induced habitat change (indirect) on potential future distributions of ptarmigan. Results: White-tailed and rock ptarmigan were associated with colder temperatures and tundra-like open habitats and willow ptarmigan with open, shrub habitats. Future projections based on climate and vegetation scenarios indicated marked losses in suitable habitat by the 2080s (RCP +8.5 W/m2), with range declines of 85.6% and 79.5% for white-tailed and rock ptarmigan, respectively, and a lower 61.3% for willow ptarmigan. Predicted current and future suitable habitat occurred primarily outside of current protected areas (67%–82%), yet range size declined at a less pronounced rate within protected areas suggesting a capacity to buffer habitat loss. Main conclusions: Ptarmigan are predicted to persist at higher elevations and latitudes than currently occupied, with the magnitude of elevation shifts consistent with trends observed elsewhere in the Holarctic. Our spatially explicit assessment of potential current and future distributions of ptarmigan species provides the first comprehensive evaluation of climate change effects on the distribution of three congeneric, cold-adapted species with different habitat preferences and life-history traits. We also highlight the potential role of protected areas in preserving suitable future sites for ptarmigan and other climate-sensitive or high-elevation species

    Bound States in Mildly Curved Layers

    Full text link
    It has been shown recently that a nonrelativistic quantum particle constrained to a hard-wall layer of constant width built over a geodesically complete simply connected noncompact curved surface can have bound states provided the surface is not a plane. In this paper we study the weak-coupling asymptotics of these bound states, i.e. the situation when the surface is a mildly curved plane. Under suitable assumptions about regularity and decay of surface curvatures we derive the leading order in the ground-state eigenvalue expansion. The argument is based on Birman-Schwinger analysis of Schroedinger operators in a planar hard-wall layer.Comment: LaTeX 2e, 23 page

    A theoretical study of the C- 4So_3/2 and 2Do_{3/2,5/2} bound states and C ground configuration: fine and hyperfine structures, isotope shifts and transition probabilities

    Full text link
    This work is an ab initio study of the 2p3 4So_3/2, and 2Do_{3/2,5/2} states of C- and 2p2 3P_{0,1,2}, 1D_2, and 1S_0 states of neutral carbon. We use the multi-configuration Hartree-Fock approach, focusing on the accuracy of the wave function itself. We obtain all C- detachment thresholds, including correlation effects to about 0.5%. Isotope shifts and hyperfine structures are calculated. The achieved accuracy of the latter is of the order of 0.1 MHz. Intra-configuration transition probabilities are also estimated.Comment: 15 pages, 2 figures, 12 table

    Spectroscopy and dissociative recombination of the lowest rotational states of H3+

    Full text link
    The dissociative recombination of the lowest rotational states of H3+ has been investigated at the storage ring TSR using a cryogenic 22-pole radiofrequency ion trap as injector. The H3+ was cooled with buffer gas at ~15 K to the lowest rotational levels, (J,G)=(1,0) and (1,1), which belong to the ortho and para proton-spin symmetry, respectively. The rate coefficients and dissociation dynamics of H3+(J,G) populations produced with normal- and para-H2 were measured and compared to the rate and dynamics of a hot H3+ beam from a Penning source. The production of cold H3+ rotational populations was separately studied by rovibrational laser spectroscopy using chemical probing with argon around 55 K. First results indicate a ~20% relative increase of the para contribution when using para-H2 as parent gas. The H3+ rate coefficient observed for the para-H2 source gas, however, is quite similar to the H3+ rate for the normal-H2 source gas. The recombination dynamics confirm that for both source gases, only small populations of rotationally excited levels are present. The distribution of 3-body fragmentation geometries displays a broad part of various triangular shapes with an enhancement of ~12% for events with symmetric near-linear configurations. No large dependences on internal state or collision energy are found.Comment: 10 pages, 9 figures, to be published in Journal of Physics: Conference Proceeding

    Fishery biomass trends of exploited fish populations in marine ecoregions, climatic zones and ocean basins

    Get PDF
    Highlights: • 1st global long-term fishery biomass trends evaluation of 1300 exploited marine populations. • Decline in average fishery biomass observed across oceans and climate zones. • Systemic wide-spread overfishing of the world's coastal and continental shelf water. Abstract: This contribution presents time series of the ‘fishery biomass’ of fish populations, defined as the weight (whole-body, wet weight) of the in-water part of a fishable population, i.e., that part of a population (also called ‘stock’) that is exposed to a certain fishing gear. Detailed data of this type are only available for a limited number of species that are targets of the fisheries in the waters of economically developed regions, such as Europe, the USA, Canada or Australia. However, similar fishery biomass assessments are generally lacking for developing countries, even for many of their most heavily fished species. Here, an estimation of the long-term fishery biomass trends of 1320 fish and invertebrate populations for 483 species exploited by fisheries in the 232 coastal Marine Ecoregions (MEs) around the world was undertaken. Fishery biomass trends were derived using the Bayesian CMSY stock assessment method applied to the global fisheries catch database for 1950–2014 as reconstructed by the Sea Around Us for every maritime fishing country in the world. Overall, the results suggest a consistent decline in the fishery biomass of exploited populations, in virtually all climatic zones and ocean basins in the world. The only zone with currently higher fishery biomass than in 1950 is the northern Pacific polar-boreal zone, likely due to environmental changes that occurred in the region positively affecting fish populations, combined with prudent management of the fisheries. For populations in MEs that are known to have highly questionable catch statistics, the results suggested smaller declines in fishery biomass than likely occurred in reality, implying that these results do not exaggerate declining trends in fishery biomass. This study used informative Bayesian priors to improve the trend analyses in areas where systematic stock assessments were conducted. The use of these independent assessments reduced the uncertainty associated with the findings of this study

    Anisotropic fragmentation in low-energy dissociative recombination

    Full text link
    On a dense energy grid reaching up to 75 meV electron collision energy the fragmentation angle and the kinetic energy release of neutral dissociative recombination fragments have been studied in a twin merged beam experiment. The anisotropy described by Legendre polynomials and the extracted rotational state contributions were found to vary on a likewise narrow energy scale as the rotationally averaged rate coefficient. For the first time angular dependences higher than 2nd^{nd} order could be deduced. Moreover, a slight anisotropy at zero collision energy was observed which is caused by the flattened velocity distribution of the electron beam.Comment: 8 pages, 4 figures; The Article will be published in the proceedings of DR 2007, a symposium on Dissociative Recombination held in Ameland, The Netherlands (18.-23. July 2008); Reference 19 has been published meanwhile in S. Novotny, PRL 100, 193201 (2008

    Limit on suppression of ionization in metastable neon traps due to long-range anisotropy

    Get PDF
    This paper investigates the possibility of suppressing the ionization rate in a magnetostatic trap of metastable neon atoms by spin-polarizing the atoms. Suppression of the ionization is critical for the possibility of reaching Bose-Einstein condensation with such atoms. We estimate the relevant long-range interactions for the system, consisting of electric quadrupole-quadrupole and dipole-induced dipole terms, and develop short-range potentials based on the Na_2 singlet and triplet potentials. The auto-ionization widths of the system are also calculated. With these ingredients we calculate the ionization rate for spin-polarized and for spin-isotropic samples, caused by anisotropy of the long-range interactions. We find that spin-polarization may allow for four orders of magnitude suppression of the ionization rate for Ne. The results depend sensitively on a precise knowledge of the interaction potentials, however, pointing out the need for experimental input. The same model gives a suppression ratio close to unity for metastable xenon in accordance with experimental results, due to a much increased anisotropy in this case.Comment: 15 pages including figures, LaTex/RevTex, uses epsfig.st

    Positronic lithium, an electronically stable Li-e+^+ ground state

    Get PDF
    Calculations of the positron-Li system were performed using the Stochastic Variational Method and yielded a minimum energy of -7.53208 Hartree for the L=0 ground state. Unlike previous calculations of this system, the system was found to be stable against dissociation into the Ps + Li+^+ channel with a binding energy of 0.00217 Hartree and is therefore electronically stable. This is the first instance of a rigorous calculation predicting that it is possible to combine a positron with a neutral atom and form an electronically stable bound state.Comment: 11 pages, 2 tables. To be published in Phys.Rev.Let

    Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations

    Get PDF
    This study presents a historical review, a meta-analysis, and recommendations for users about weight–length relationships, condition factors and relative weight equations. The historical review traces the developments of the respective concepts. The meta-analysis explores 3929 weight–length relationships of the type W = aLb for 1773 species of fishes. It shows that 82% of the variance in a plot of log a over b can be explained by allometric versus isometric growth patterns and by different body shapes of the respective species. Across species median b = 3.03 is significantly larger than 3.0, thus indicating a tendency towards slightly positive-allometric growth (increase in relative body thickness or plumpness) in most fishes. The expected range of 2.5 < b < 3.5 is confirmed. Mean estimates of b outside this range are often based on only one or two weight–length relationships per species. However, true cases of strong allometric growth do exist and three examples are given. Within species, a plot of log a vs b can be used to detect outliers in weight–length relationships. An equation to calculate mean condition factors from weight–length relationships is given as Kmean = 100aLb−3. Relative weight Wrm = 100W/(amLbm) can be used for comparing the condition of individuals across populations, where am is the geometric mean of a and bm is the mean of b across all available weight–length relationships for a given species. Twelve recommendations for proper use and presentation of weight–length relationships, condition factors and relative weight are given
    • …
    corecore