26 research outputs found

    Relaxation properties in a lattice gas model with asymmetrical particles

    Full text link
    We study the relaxation process in a two-dimensional lattice gas model, where the interactions come from the excluded volume. In this model particles have three arms with an asymmetrical shape, which results in geometrical frustration that inhibits full packing. A dynamical crossover is found at the arm percolation of the particles, from a dynamical behavior characterized by a single step relaxation above the transition, to a two-step decay below it. Relaxation functions of the self-part of density fluctuations are well fitted by a stretched exponential form, with a β\beta exponent decreasing when the temperature is lowered until the percolation transition is reached, and constant below it. The structural arrest of the model seems to happen only at the maximum density of the model, where both the inverse diffusivity and the relaxation time of density fluctuations diverge with a power law. The dynamical non linear susceptibility, defined as the fluctuations of the self-overlap autocorrelation, exhibits a peak at some characteristic time, which seems to diverge at the maximum density as well.Comment: 7 pages and 9 figure

    Computer Simulations of Supercooled Liquids and Glasses

    Full text link
    After a brief introduction to the dynamics of supercooled liquids, we discuss some of the advantages and drawbacks of computer simulations of such systems. Subsequently we present the results of computer simulations in which the dynamics of a fragile glass former, a binary Lennard-Jones system, is compared to the one of a strong glass former, SiO_2. This comparison gives evidence that the reason for the different temperature dependence of these two types of glass formers lies in the transport mechanism for the particles in the vicinity of T_c, the critical temperature of mode-coupling theory. Whereas the one of the fragile glass former is described very well by the ideal version of mode-coupling theory, the one for the strong glass former is dominated by activated processes. In the last part of the article we review some simulations of glass formers in which the dynamics below the glass transition temperature was investigated. We show that such simulations might help to establish a connection between systems with self generated disorder (e.g. structural glasses) and quenched disorder (e.g. spin glasses).Comment: 37 pages of Latex, 11 figures, to appear as a Topical Review article in J. Phys.: Condens. Matte

    Catecholaminergic modulation of the cost of cognitive control in healthy older adults

    Get PDF
    Contains fulltext : 219278.pdf (publisher's version ) (Open Access)Catecholamines have long been associated with cognitive control and value-based decision-making. More recently, we have shown that catecholamines also modulate value-based decision-making about whether or not to engage in cognitive control. Yet it is unclear whether catecholamines influence these decisions by altering the subjective value of control. Thus, we tested whether tyrosine, a catecholamine precursor altered the subjective value of performing a demanding working memory task among healthy older adults (60-75 years). Contrary to our prediction, tyrosine administration did not significantly increase the subjective value of conducting an N-back task for reward, as a main effect. Instead, in line with our previous study, exploratory analyses indicated that drug effects varied as a function of participants' trait impulsivity scores. Specifically, tyrosine increased the subjective value of conducting an N-back task in low impulsive participants, while reducing its value in more impulsive participants. One implication of these findings is that the over-the-counter tyrosine supplements may be accompanied by an undermining effect on the motivation to perform demanding cognitive tasks, at least in certain older adults. Taken together, these findings indicate that catecholamines can alter cognitive control by modulating motivation (rather than just the ability) to exert cognitive control

    Controlling striatal function via anterior frontal cortex stimulation

    No full text
    Motivational, cognitive and action goals are processed by distinct, topographically organized, corticostriatal circuits. We aimed to test whether processing in the striatum is under causal control by cortical regions in the human brain by investigating the effects of offline transcranial magnetic stimulation (TMS) over distinct frontal regions associated with motivational, cognitive and action goal processing. Using a three-session counterbalanced within-subject crossover design, continuous theta burst stimulation was applied over the anterior prefrontal cortex (aPFC), dorsolateral prefrontal cortex, or premotor cortex, immediately after which participants (N = 27) performed a paradigm assessing reward anticipation (motivation), task (cognitive) switching, and response (action) switching. Using task-related functional magnetic resonance imaging (fMRI), we assessed the effects of stimulation on processing in distinct regions of the striatum. To account for non-specific effects, each session consisted of a baseline (no-TMS) and a stimulation (post-TMS) fMRI run. Stimulation of the aPFC tended to decrease reward-related processing in the caudate nucleus, while stimulation of the other sites was unsuccessful. A follow-up analysis revealed that aPFC stimulation also decreased processing in the putamen as a function of the interaction between all factors (reward, cognition and action), suggesting stimulation modulated the transfer of motivational information to cortico-striatal circuitry associated with action control

    Catecholamine Challenge Uncovers Distinct Mechanisms for Direct Versus Indirect, but Not Social Versus Non-Social, Learning

    No full text
    ABSTRACTEvidence that social and individual learning are at least partially dissociable sustains the belief that humans possess adaptive specialisations for social learning. However, in most extant paradigms, social information comprises an indirect source that can be used to supplement one’s own, direct, experience. Thus, social and individual learning differ both in terms of social nature (social versus non-social) and directness (indirect versus direct). To test whether the dissociation between social and individual learning is best explained in terms of social nature or directness, we used a catecholaminergic challenge known to modulate learning. Two groups completed a decision-making task which required direct learning, from own experience, and indirect learning from an additional source. The groups differed in terms of whether the indirect source was social or non-social. The catecholamine transporter blocker, methylphenidate, affected direct learning by improving adaptation to changes in the volatility of the environment but there was no effect of methylphenidate on learning from the social or non-social indirect source. Thus, we report positive evidence for a dissociable effect of methylphenidate on direct and indirect learning, but no evidence for a distinction between social and non-social. These data fail to support the adaptive specialisation view, instead providing evidence for distinct mechanisms for direct versus indirect learning.</jats:p
    corecore