3,006 research outputs found

    Compton scattering of twisted light: angular distribution and polarization of scattered photons

    Full text link
    Compton scattering of twisted photons is investigated within a non-relativistic framework using first-order perturbation theory. We formulate the problem in the density matrix theory, which enables one to gain new insights into scattering processes of twisted particles by exploiting the symmetries of the system. In particular, we analyze how the angular distribution and polarization of the scattered photons are affected by the parameters of the initial beam such as the opening angle and the projection of orbital angular momentum. We present analytical and numerical results for the angular distribution and the polarization of Compton scattered photons for initially twisted light and compare them with the standard case of plane-wave light

    Multipartite W states for chains of atoms conveyed through an optical cavity

    Full text link
    We propose and work out a scheme to generate the entangled W states for a chain of N four-level atoms which are transported through an optical cavity by means of an optical lattice. This scheme is based on the combined laser-cavity mediated interaction between distant and equally separated atoms and works in a completely deterministic way for qubits encoded by two hyperfine levels of the atoms. Only two parameters, namely the distance between the atoms and the velocity of the chain, determine the effective interaction among the atoms and, therefore, the degree of entanglement that is obtained for the overall chain of N qubits. In particular, we work out the parameter regions for which the W states are generated most reliably for chains of N = 2,3,4 and 5 atoms. In addition, we analyze the sensitivity in the formation of entanglement for such chains of qubits due to uncertainties produced by the oscillations of atoms in optical lattices.Comment: 12 pages, revised version accepted in PR

    Many-electron effects on the x-ray Rayleigh scattering by highly charged He-like ions

    Full text link
    The Rayleigh scattering of x-rays by many-electron highly charged ions is studied theoretically. The many-electron perturbation theory, based on a rigorous quantum electrodynamics approach, is developed and implemented for the case of the elastic scattering of (high-energetic) photons by helium-like ion. Using this elaborate approach, we here investigate the many-electron effects beyond the independent-particle approximation (IPA) as conventionally employed for describing the Rayleigh scattering. The total and angle-differential cross sections are evaluated for the x-ray scattering by helium-like Ni26+^{26+}, Xe52+^{52+}, and Au77+^{77+} ions in their ground state. The obtained results show that, for high-energetic photons, the effects beyond the IPA do not exceed 2% for the scattering by a closed KK-shell.Comment: 15 pages, 11 figure

    Hyperfine-induced effects on the linear polarization of the Kα1\alpha_1 emission from helium-like ions

    Full text link
    The linear polarization of the characteristic photon emission from few-electron ions is studied for its sensitivity with regard to the nuclear spin and magnetic moment of the ions. Special attention is paid, in particular, to the Kα1\alpha_1 (1s 2p_{3/2} ^{1,3}P_{1,2} \to 1s^2 ^1S_0) decay of selected helium-like ions following the radiative electron capture into initially hydrogen-like species. Based on the density matrix theory, a unified description is developed that includes both, the many-electron and hyperfine interactions as well as the multipole-mixing effects arising from the expansion of the radiation field. It is shown that the polarization of the Kα1\alpha_1 line can be significantly affected by the mutipole mixing between the leading M2M2 and hyperfine-induced E1E1 components of 1s2p ^3P_2, F_i \to 1s^2 ^1S_0, F_f transitions. This E1E1-M2M2 mixing strongly depends on the nuclear properties of the considered isotopes and can be addressed experimentally at existing heavy-ion storage rings

    Discrete Dirac system: rectangular Weyl functions, direct and inverse problems

    Full text link
    A transfer matrix function representation of the fundamental solution of the general-type discrete Dirac system, corresponding to rectangular Schur coefficients and Weyl functions, is obtained. Connections with Szeg\"o recurrence, Schur coefficients and structured matrices are treated. Borg-Marchenko-type uniqueness theorem is derived. Inverse problems on the interval and semiaxis are solved.Comment: Section 2 is improved in the second version: some new results on Halmos extension are added and arguments are simplifie

    Copyrightability of Music Compilations and Playlists: Original and Creative Works of Authorship?

    Get PDF
    Music compilations and playlists have a common nucleus of an act of gathering songs and ordering them. Their selection and arrangement can be decisive of the success and therefore can be valuable. And here is where the legal issues about their ownership arise: Are music compilations and playlists protectable under the regime of Copyright Law? This article will discuss the legal and practical issues connected with that question. Thereby, it will consider the United States, Europe in general and also the United Kingdom and Germany in particular. The individual legal systems and statutes will be analyzed, as well as the comprehensive jurisprudence. Finally, the most recent developments in the matter will be discussed
    • …
    corecore