1,155 research outputs found

    Rapid, Specific Determination of Iodine and Iodide by Combined Solid-Phase Extraction/Diffuse Reflectance Spectroscopy

    Get PDF
    A new, rapid methodology for trace analysis using solid-phase extraction is described. The two-step methodology is based on the concentration of an analyte onto a membrane disk and on the determination by diffuse reflectance spectroscopy of the amount of analyte extracted on the disk surface. This method, which is adaptable to a wide range of analytes, has been used for monitoring ppm levels of iodine and iodide in spacecraft water. Iodine is used as a biocide in spacecraft water. For these determinations, a water sample is passed through a membrane disk by means of a 10-mL syringe that is attached to a disk holder assembly. The disk, which is a polystyrene−divinylbenzene composite, is impregnated with poly(vinylpyrrolidone) (PVP), which exhaustively concentrates iodine as a yellow iodine−PVP complex. The amount of concentrated iodine is then determined in only 2 s by using a hand-held diffuse reflectance spectrometer by comparing the result with a calibration curve based on the Kubelka−Munk function. The same general procedure can be used to determine iodide levels after its facile and exhaustive oxidation to iodine by peroxymonosulfate (i.e., Oxone reagent). For samples containing both analytes, a two-step procedure can be used in which the iodide concentration is calculated from the difference in iodine levels before and after treatment of the sample with peroxymonosulfate. With this methodology, iodine and iodide levels in the 0.1−5.0 ppm range can be determined with a total workup time of ∼60 s with a RSD of ∼6%

    Rapid, Low Level Determination of Silver(I) in Drinking Water by Colorimetric–solid-phase Extraction

    Get PDF
    A rapid, highly sensitive two-step procedure for the trace analysis of silver(I) is described. The method is based on: (1) the solid-phase extraction (SPE) of silver(I) from a water sample onto a disk impregnated with a silver-selective colorimetric reagent, and (2) the determination of the amount of complexed analyte extracted by the disk by diffuse reflectance spectroscopy (DRS). This method, called colorimetric–solid-phase extraction (C–SPE), was recently shown effective in determining low concentrations (0.1–5.0 mg/ml) of iodine and iodide in drinking water. This report extends C–SPE to the trace (∼4 μg/l) level monitoring of silver(I) which is a biocide used on the International Space Station (ISS). The determination relies on the manually driven passage of a water sample through a polystyrene–divinylbenzene disk that has been impregnated with the colorimetric reagent 5-(p-dimethylaminobenzylidene) rhodanine (DMABR) and with an additive such as a semi-volatile alcohol (1,2-decanediol) or nonionic surfactant (Brij 30). The amount of concentrated silver(I) is then determined in a few seconds by using a hand-held diffuse reflectance spectrometer, with a total sample workup and readout time of ∼60 s. Importantly, the additive induces the uptake of water by the disk, which creates a local environment conducive to silver(I) complexation at an extremely high concentration factor (∼800). There is no detectable reaction between silver(I) and impregnated DMABR in the absence of the additive. This strategy represents an intriguing new dimension for C–SPE in which additives, directly loaded in the disk material, provide a means to manipulate the reactivity of the impregnated reagent

    A titrimetric determination of thorium

    Get PDF
    A rapid, accurate method for thorium is proposed in which thorium is titrated with a standard solution of ethylenediaminetetraacetic acid (EDTA). Alizarin Red S serves as the indicator, a sharp change from pink to yellow marking the end point of the titration. The method is selective for thorium although several cations and anions interfere. A preliminary extraction of thorium nitrate by mentyl oxide provides an excellent separation of thorium from most interfering ions

    Modified resins for solid-phase extraction

    Get PDF
    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl

    Bibliography of reversed-phase partition chromatography

    Get PDF
    BIBLIOGRAPHY OF REVERSED-PHASE PARTITION CHROMATOGRAPH

    Multiplexed Colorimetric Solid-Phase Extraction

    Get PDF
    Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II)

    SNP Discovery and Genomic Architecture of Highly Inbred Leghorn and Fayoumi Chicken Breeds Using Whole Genome Resequencing

    Get PDF
    Advances in the use of next generation sequencing (NGS) and ability to pool individuals into groups that represent distinct livestock populations has made it possible to examine trait differences between breeds of chicken. The breeds examined are very divergent when compared on their history of laying ability and immune response. The long-term objective is to understand the genetic differences between the Leghorn and Fayoumi breeds for use in developing more productive and disease resistant chickens. Statistical testing of the sequence of the two breeds along with Gene set enrichment analysis (GSEA) to make connections between the genetic variation seen in the NGS data and the breed specific traits of egg laying and heightened immune response can be used to characterize these two breeds. Genetic terms having the highest level of differentiation between the lines appear to group into metabolic processes, with terms over-enriched for immune system process, sexual reproduction, and growth for variants examined between lines. Terms for functions within the Fayoumi and Leghorn populations aligned to immune function and reproductive function, respectively. These results are consistent with known breed phenotypes and provide a means to focus on specific DNA variations and the birds’ genetic diversity that are potentially of more commercial importance

    Method of isolating an analyte using a solid phase extraction medium

    Get PDF
    A functionalized macroporous poly(styrene divinylbenzene) particle comprises at least one ionic functional group covalently bonded thereto, the functionalized particle having sorptive capability towards an analyte, said functional group being present in the range of 0.1 to 2.5 milliequivalents per gram of poly(styrene divinylbenzene). The functionalized particles can be used in a packed column or enmeshed in a nonwoven web for utility in solid phase extraction applications

    A metaproteomic approach to study human-microbial ecosystems at the mucosal luminal interface

    Get PDF
    Aberrant interactions between the host and the intestinal bacteria are thought to contribute to the pathogenesis of many digestive diseases. However, studying the complex ecosystem at the human mucosal-luminal interface (MLI) is challenging and requires an integrative systems biology approach. Therefore, we developed a novel method integrating lavage sampling of the human mucosal surface, high-throughput proteomics, and a unique suite of bioinformatic and statistical analyses. Shotgun proteomic analysis of secreted proteins recovered from the MLI confirmed the presence of both human and bacterial components. To profile the MLI metaproteome, we collected 205 mucosal lavage samples from 38 healthy subjects, and subjected them to high-throughput proteomics. The spectral data were subjected to a rigorous data processing pipeline to optimize suitability for quantitation and analysis, and then were evaluated using a set of biostatistical tools. Compared to the mucosal transcriptome, the MLI metaproteome was enriched for extracellular proteins involved in response to stimulus and immune system processes. Analysis of the metaproteome revealed significant individual-related as well as anatomic region-related (biogeographic) features. Quantitative shotgun proteomics established the identity and confirmed the biogeographic association of 49 proteins (including 3 functional protein networks) demarcating the proximal and distal colon. This robust and integrated proteomic approach is thus effective for identifying functional features of the human mucosal ecosystem, and a fresh understanding of the basic biology and disease processes at the MLI. © 2011 Li et al

    Shock formation and the ideal shape of ramp compression waves

    Full text link
    We derive expressions for shock formation based on the local curvature of the flow characteristics during dynamic compression. Given a specific ramp adiabat, calculated for instance from the equation of state for a substance, the ideal nonlinear shape for an applied ramp loading history can be determined. We discuss the region affected by lateral release, which can be presented in compact form for the ideal loading history. Example calculations are given for representative metals and plastic ablators. Continuum dynamics (hydrocode) simulations were in good agreement with the algebraic forms. Example applications are presented for several classes of laser-loading experiment, identifying conditions where shocks are desired but not formed, and where long duration ramps are desired
    • …
    corecore