5,275 research outputs found

    Exports, Services and Value Added - A National, International and Regional Analysis for Austria

    Get PDF
    Austrian business cycles are strongly dependent on the development of foreign exports. The paper deals with two important issues in this context: What is the impact of foreign exports on total growth in the Austrian economy? A more and more globalized economy implies that the share of foreign imports in the production of export commodities increases. This suggests that the contribution of foreign exports to domestic growth will diminish over time ? this hypothesis will be tested in the paper. In addition, the results for Austria will be compared with those for other countries in the EU as well as the OECD. Export activities are not evenly distributed over space: While some regions are more specialized in the production of commodities for the domestic market, other regions are much more dependent on foreign exports. In the paper, the regional economic consequences of the value-added impacts of foreign exports will be analysed. The paper will make use of national input-output tables for the years 1995, 2000 and 2003 as well as input-output tables for OECD countries to examine the national economic impacts of foreign exports and an international comparison. Furthermore, a multiregional model for Austria ("MultiREG") will be applied for estimating the corresponding regional impacts.Competitiveness, Export of Services

    Optimization conditions of UV-C radiation combined with ultrasound-assisted extraction of cherry tomato (Lycopersicon esculentum) lycopene extract

    Get PDF
    The aim of this work was to study the effect of UV-C radiation on ultrasound assisted extraction (UAE) of cherry tomato bioactive compounds. Cherry tomatoes were exposed to two UV-C radiation doses (0.5 and 1.0 J cm−2 ) and stored at 20 ± 0.5 oC for 7 days. Next, they were lyophilized, and the bioactive compounds were extracted by UAE at 20 KHz. To evaluate the effectiveness of the extraction process of the bioactive compounds, a CCRD (central composite rotational design) was used together with RSM (response surface methodology), for extraction times from 4 to 12 minutes and concentrations (g of lyophilized product / L of ethanol) of 1:10, 1:20 and 1:30. The extracts obtained from the irradiated tomatoes presented 5.8 times more lycopene content than the controls and higher antioxidant activity was obtained for 4 and 8 min, in the concentrations 1:10 and 1:20 (m v−1). Through numerical model optimization, optimal extraction conditions were obtained. The results demonstrated that by previously irradiating tomatoes with UV-C light, the UAE yielded considerably higher amounts of lycopene and other bioactives.CNPq (National Council of Technological and Scientific Development, Brazil), Erasmus Mundus action 2; Fellow Mundus Project; Department of Chemical Engineering and Food Engineering (UFSC - Brazil) and the Department of Food Engineering (UAlg - Portugal) .info:eu-repo/semantics/publishedVersio

    Overdamping by weakly coupled environments

    Get PDF
    A quantum system weakly interacting with a fast environment usually undergoes a relaxation with complex frequencies whose imaginary parts are damping rates quadratic in the coupling to the environment, in accord with Fermi's ``Golden Rule''. We show for various models (spin damped by harmonic-oscillator or random-matrix baths, quantum diffusion, quantum Brownian motion) that upon increasing the coupling up to a critical value still small enough to allow for weak-coupling Markovian master equations, a new relaxation regime can occur. In that regime, complex frequencies lose their real parts such that the process becomes overdamped. Our results call into question the standard belief that overdamping is exclusively a strong coupling feature.Comment: 4 figures; Paper submitted to Phys. Rev.

    Metallicities of M Dwarf Planet Hosts from Spectral Synthesis

    Get PDF
    We present the first spectroscopic metallicities of three M dwarfs with known or candidate planetary mass companions. We have analyzed high resolution, high signal-to-noise spectra of these stars which we obtained at McDonald Observatory. Our analysis technique is based on spectral synthesis of atomic and molecular features using recently revised cool-star model atmospheres and spectrum synthesis code. The technique has been shown to yield results consistent with the analyses of solar-type stars and allows measurements of M dwarf [M/H] values to 0.12 dex precision. From our analysis, we find [M/H] = -0.12, -0.32, and -0.33 for GJ 876, GJ 436, and GJ 581 respectively. These three M dwarf planet hosts have sub-solar metallicities, a surprising departure from the trend observed in FGK-type stars. This study is the first part of our ongoing work to determine the metallicities of the M dwarfs included in the McDonald Observatory planet search program.Comment: 13 pages, 2 figures, accepted for publication in ApJ

    Kondo effect of an adatom in graphene and its scanning tunneling spectroscopy

    Get PDF
    We study the Kondo effect of a single magnetic adatom on the surface of graphene. It was shown that the unique linear dispersion relation near the Dirac points in graphene makes it more easy to form the local magnetic moment, which simply means that the Kondo resonance can be observed in a more wider parameter region than in the metallic host. The result indicates that the Kondo resonance indeed can form ranged from the Kondo regime, to the mixed valence, even to the empty orbital regime. While the Kondo resonance displays as a sharp peak in the first regime, it has a peak-dip structure and/or an anti-resonance in the remaining two regimes, which result from the Fano resonance due to the significant background leaded by dramatically broadening of the impurity level in graphene. We also study the scanning tunneling microscopy (STM) spectra of the adatom and they show obvious particle-hole asymmetry when the chemical potential is tuned by the gate voltages applied to the graphene. Finally, we explore the influence of the direct tunneling channel between the STM tip and the graphene on the Kondo resonance and find that the lineshape of the Kondo resonance is unaffected, which can be attributed to unusual large asymmetry factor in graphene. Our study indicates that the graphene is an ideal platform to study systematically the Kondo physics and these results are useful to further stimulate the relevant experimental studies on the system.Comment: 8 pages, 5 figure

    Shock formation and the ideal shape of ramp compression waves

    Full text link
    We derive expressions for shock formation based on the local curvature of the flow characteristics during dynamic compression. Given a specific ramp adiabat, calculated for instance from the equation of state for a substance, the ideal nonlinear shape for an applied ramp loading history can be determined. We discuss the region affected by lateral release, which can be presented in compact form for the ideal loading history. Example calculations are given for representative metals and plastic ablators. Continuum dynamics (hydrocode) simulations were in good agreement with the algebraic forms. Example applications are presented for several classes of laser-loading experiment, identifying conditions where shocks are desired but not formed, and where long duration ramps are desired

    Dual Contrastive Loss and Attention for {GANs}

    Get PDF

    Description of nuclear systems within the relativistic Hartree-Fock method with zero range self-interactions of the scalar field

    Full text link
    An exact method is suggested to treat the nonlinear self-interactions (NLSI) in the relativistic Hartree-Fock (RHF) approach for nuclear systems. We consider here the NLSI constructed from the relativistic scalar nucleon densities and including products of six and eight fermion fields. This type of NLSI corresponds to the zero range limit of the standard cubic and quartic self-interactions of the scalar field. The method to treat the NLSI uses the Fierz transformation, which enables one to express the exchange (Fock) components in terms of the direct (Hartree) ones. The method is applied to nuclear matter and finite nuclei. It is shown that, in the RHF formalism, the NLSI, which are explicitly isovector-independent, generate scalar, vector and tensor nucleon self-energies strongly density-dependent. This strong isovector structure of the self-energies is due to the exchange terms of the RHF method. Calculations are carried out with a parametrization containing five free parameters. The model allows a description of both types of systems compatible with experimental data.Comment: 23 pages, 14 figures (v2: major quantitative changes
    corecore