568 research outputs found

    A 30-Year History of Salt Creek Tiger Beetle, \u3ci\u3eEllipsoptera nevadica lincolniana\u3c/i\u3e (Casey, 1916) (Coleoptera: Cicindelidae), Visual Population Estimates

    Get PDF
    The federally endangered Salt Creek tiger beetle, Ellipsoptera nevadica lincolniana (Casey, 1916), is found only in the saline wetlands around Lincoln, Nebraska, USA. Low numbers of adults seen in the 1980s prompted a study to estimate adult numbers by visual counts. Population estimates were conducted from 1991 to 2020, and adult estimates ranged from a low of 115 in 1993 to a high of 777 in 2002. The beetle has disappeared from six out of twelve sites and the metapopulation has shrunk from three sites in 1991 to one site in 2020. Supplemental releases of laboratory reared larvae began in 2010, but success has been difficult to determine

    Lake regionalization and diatom metacommunity structuring in tropical South America

    Get PDF
    Lakes and their topological distribution across Earth’s surface impose ecological and evolutionary constraints on aquatic metacommunities. In this study, we group similar lake ecosystems as metacommunity units influencing diatom community structure. We assembled a database of 195 lakes from the tropical Andes and adjacent lowlands (8°N–30°S and 58–79°W) with associated environmental predictors to examine diatom metacommunity patterns at two different levels: taxon and functional (deconstructed species matrix by ecological guilds). We also derived spatial variables that inherently assessed the relative role of dispersal. Using complementary multivariate statistical techniques (principal component analysis, cluster analysis, nonmetric multidimensional scaling, Procrustes, variance partitioning), we examined diatom–environment relationships among different lake habitats (sediment surface, periphyton, and plankton) and partitioned community variation to evaluate the influence of niche-and dispersal-based assembly processes in diatom metacommunity structure across lake clusters. The results showed a significant association between geographic clusters of lakes based on gradients of climate and landscape configuration and diatom assemblages. Six lake clusters distributed along a latitudinal gradient were identified as functional metacommunity units for diatom communities. Variance partitioning revealed that dispersal mechanisms were a major contributor to diatom metacommunity structure, but in a highly context-dependent fashion across lake clusters. In the Andean Altiplano and adjacent lowlands of Bolivia, diatom metacommunities are niche assembled but constrained by either dispersal limitation or mass effects, resulting from area, environmental heterogeneity, and ecological guild relationships. Topographic heterogeneity played an important role in structuring planktic diatom metacommunities. We emphasize the value of a guild-based metacommunity model linked to dispersal for elucidating mechanisms underlying latitudinal gradients in distribution. Our findings reveal the importance of shifts in ecological drivers across climatic and physiographically distinct lake clusters, providing a basis for comparison of broad-scale community gradients in lake-rich regions elsewhere. This may help guide future research to explore evolutionary constraints on the rich Neotropical benthic diatom species pool

    Lake Regionalization and Diatom Metacommunity Structuring in Tropical South America

    Get PDF
    Lakes and their topological distribution across Earth\u27s surface impose ecological and evolutionary constraints on aquatic metacommunities. In this study, we group similar lake ecosystems as metacommunity units influencing diatom community structure. We assembled a database of 195 lakes from the tropical Andes and adjacent lowlands (8°N–30°S and 58–79°W) with associated environmental predictors to examine diatom metacommunity patterns at two different levels: taxon and functional (deconstructed species matrix by ecological guilds). We also derived spatial variables that inherently assessed the relative role of dispersal. Using complementary multivariate statistical techniques (principal component analysis, cluster analysis, nonmetric multidimensional scaling, Procrustes, variance partitioning), we examined diatom–environment relationships among different lake habitats (sediment surface, periphyton, and plankton) and partitioned community variation to evaluate the influence of niche‐ and dispersal‐based assembly processes in diatom metacommunity structure across lake clusters. The results showed a significant association between geographic clusters of lakes based on gradients of climate and landscape configuration and diatom assemblages. Six lake clusters distributed along a latitudinal gradient were identified as functional metacommunity units for diatom communities. Variance partitioning revealed that dispersal mechanisms were a major contributor to diatom metacommunity structure, but in a highly context‐dependent fashion across lake clusters. In the Andean Altiplano and adjacent lowlands of Bolivia, diatom metacommunities are niche assembled but constrained by either dispersal limitation or mass effects, resulting from area, environmental heterogeneity, and ecological guild relationships. Topographic heterogeneity played an important role in structuring planktic diatom metacommunities. We emphasize the value of a guild‐based metacommunity model linked to dispersal for elucidating mechanisms underlying latitudinal gradients in distribution. Our findings reveal the importance of shifts in ecological drivers across climatic and physiographically distinct lake clusters, providing a basis for comparison of broad‐scale community gradients in lake‐rich regions elsewhere. This may help guide future research to explore evolutionary constraints on the rich Neotropical benthic diatom species pool

    The European Forest and Agriculture Optimisation Model -- EUFASOM

    Get PDF
    Land use is a key factor to social wellbeing and has become a major component in political negotiations. This paper describes the mathematical structure of the European Forest and Agricultural Sector Optimization Model. The model represents simultaneously observed resource and technological heterogeneity, global commodity markets, and multiple environmental qualities. Land scarcity and land competition between traditional agriculture, forests, nature reserves, pastures, and bioenergy plantations is explicitly captured. Environmental change, technological progress, and policies can be investigated in parallel. The model is well-suited to estimate competitive economic potentials of land based mitigation, leakage, and synergies and trade-offs between multiple environmental objectives.Land Use Change Optimization, Resource Scarcity, Market Competition, Welfare Maximization, Bottom-up Partial Equilibrium Analysis, Agricultural Externality Mitigation, Forest Dynamics, Global Change Adaptation, Environmental Policy Simulation, Integrated Assessment, Mathematical Programming, GAMS

    Determining Optimum Soil Type and Salinity for Rearing the Federally Endangered Salt Creek Tiger Beetle, \u3ci\u3eCicindela (Ellipsoptera) nevadica lincolniana\u3c/i\u3e Casey (Coleoptera: Carabidae: Cicindelinae)

    Get PDF
    Effective rearing methods are needed to recover the federally endangered Salt Creek tiger beetle, Cicindela (Ellipsoptera) nevadica lincolniana Casey, a subspecies that occurs exclusively in saline wetlands and seeps along Little Salt Creek in Lancaster County, Nebraska. Experiments were initiated to determine soil type and salinity concentrations appropriate for stimulating female oviposition in laboratory settings to produce larvae and/or adults for reintroduction to native habitats. In 2013, there were highly significant differences between native soil and a sand/loess soil mixture, but no differences between two salinity levels, 0.354 M and 0.5 M. In 2014, using only a sand/loess soil mixture, there were again no differences between the test salinity levels. A sand/loess soil mixture of either 0.354M or 0.5M salinity was determined to be optimum for egg production

    Determining Optimum Soil Type and Salinity for Rearing the Federally Endangered Salt Creek Tiger Beetle, \u3ci\u3eCicindela (Ellipsoptera) nevadica lincolniana\u3c/i\u3e Casey (Coleoptera: Carabidae: Cicindelinae)

    Get PDF
    Effective rearing methods are needed to recover the federally endangered Salt Creek tiger beetle, Cicindela (Ellipsoptera) nevadica lincolniana Casey, a subspecies that occurs exclusively in saline wetlands and seeps along Little Salt Creek in Lancaster County, Nebraska. Experiments were initiated to determine soil type and salinity concentrations appropriate for stimulating female oviposition in laboratory settings to produce larvae and/or adults for reintroduction to native habitats. In 2013, there were highly significant differences between native soil and a sand/loess soil mixture, but no differences between two salinity levels, 0.354 M and 0.5 M. In 2014, using only a sand/loess soil mixture, there were again no differences between the test salinity levels. A sand/loess soil mixture of either 0.354M or 0.5M salinity was determined to be optimum for egg production

    The Yedoma cliff of Sobo Sise Island, eastern Lena Delta - insights into past and modern permafrost dynamics and related organic matter stock and release

    Get PDF
    The Lena Delta in eastern Siberia is the largest Arctic delta. Its terrestrial surface is shaped by four geomorphologic units. The oldest unit is built of remnants of late Pleistocene Yedoma Ice Complex (IC) and its degradation features. The studied Yedoma cliff on Sobo Sise Island in the South-Eastern part of the delta ranges from the river level to about 28 m height and is about 1.7 km long. During a field campaign in 2018, the entire permafrost sequence of the Sobo Sise Yedoma cliff has been sampled in 0.5-m vertical intervals. The geochronological record of the Sobo Sise Yedoma spans the last 52 ka cal BP based on radiocarbon dating and age-height modelling. The sequence differentiates into three cryostratigraphic units that are MIS3 Yedoma IC (52–28 ka cal BP), MIS2 Yedoma IC (28–15 ka cal BP) and MIS1 Holocene cover (7–0 ka cal BP). The cryostratigraphic sequence is not continuous, but has chronological gaps at 36–32.5 ka cal BP, at 20.5–18 ka cal BP and at 12.5–9 cal ka BP. These gaps represent traces of past changes in permafrost deposition and/or erosion regimes and climatic conditions. The cryostratigraphic units of the Yedoma cliff are characterized by differing properties of their clastic, organic and ice components. All units are built of poorly sorted sandy silt but differ in prevalent grain-size fractions ranging from fine silt to middle sand. The organic matter (OM) content is highest in the thin MIS1 Holocene cover (TOC of 11.3±9.9 wt%, TN of 0.6±0.3 wt%), but still substantial in MIS3 Yedoma IC (TOC of 4.5±2.5 wt%, TN of 0.3±0.1 wt%) and in MIS2 Yedoma IC (TOC of 2.1±1.3 wt%, TN of 0.2±0.1 wt%). The presence of syngenetic ice wedges in all units and the high content of intrasedimentary ice amount to a total volumetric ice content of 88.4 vol%. The high ice content in combination with the exposition of the cliff towards the main river channel results in a very high susceptibility to thaw and thermo-erosion. The high mean cliff erosion rate of 10.3 m yr−1 (1975-2018) results in large OM quantities entering the Lena River (3.2±2.1 kt organic carbon per year, 0.3±0.1 kt nitrogen per year along the 1.7 km long Yedoma cliff). Ongoing fluvial dynamics and changing runoff regimes with extended ice-free seasons and warmer water will most likely maintain high permafrost cliff erosion rates in the future and further facilitate high fluxes of terrestrial fossil OM into the riverine and eventually marine ecosystems

    The Yedoma cliff of Sobo Sise Island - insights into past and modern permafrost dynamics and related organic matter stock and release

    Get PDF
    The present study of the permafrost exposed the Sobo-Sise Yedoma cliff in the eastern Lena Delta provides a comprehensive cryostratigraphic and organic matter (OM) inventory, insights into permafrost aggradation and degradation over the last about 52 thousand years and their climatic and morphodynamic controls on regional scale of the Central Laptev Sea coastal region in NE Siberia

    Aspirin Inhibits TGFÎČ2-Induced Epithelial to Mesenchymal Transition of Lens Epithelial Cells:Selective acetylation of K56 and K122 in histone H3

    Get PDF
    Posterior capsule opacification (PCO) is a complication after cataract surgery that can disrupt vision. The epithelial to mesenchymal transition (EMT) of lens epithelial cells (LECs) in response to transforming growth factor ÎČ2 (TGFÎČ2) has been considered an obligatory mechanism for PCO. In this study, we tested the efficacy of aspirin in inhibiting the TGFÎČ2-mediated EMT of human LECs, LECs in human lens capsular bags, and lensectomized mice. In human LECs, the levels of the EMT markers α-smooth muscle actin (α-SMA) and fibronectin were drastically reduced by treatment with 2 mM aspirin. Aspirin also halted the EMT response of TGFÎČ2 when introduced after EMT initiation. In human capsular bags, treatment with 2 mM aspirin significantly suppressed posterior capsule wrinkling and the expression α-SMA in capsule-adherent LECs. The inhibition of TGFÎČ2-mediated EMT in human LECs was not dependent on Smad phosphorylation or MAPK and AKT-mediated signaling. We found that aspirin significantly increased the acetylation of K56 and K122 in histone H3 of human LECs. Chromatin immunoprecipitation assays using acetyl-H3K56 or acetyl-H3K122 antibody revealed that aspirin blocked the TGFÎČ2-induced acetylation of H3K56 and H3K122 at the promoter regions of ACTA2 and COL1A1. After lensectomy in mice, we observed an increase in the proliferation and α-SMA expression of the capsule-adherent LECs, which was ameliorated by aspirin administration through drinking water. Taken together, our results showed that aspirin inhibits TGFÎČ2-mediated EMT of LECs, possibly from epigenetic down-regulation of EMT-related genes
    • 

    corecore