1,656 research outputs found

    Application of Lorenz-Mie Theory in Graphics

    Get PDF

    Mycotoxins and toxigenic fungi in sago starch from Papua New Guinea

    Get PDF
    Aims: to assay sago starch from Papua New Guinea (PNG) for important mycotoxins and to test fungal isolates from sago for mycotoxin production in culture.\ud \ud Methods and Results: sago starch collected from Western and East Sepik Provinces was assayed for aflatoxins, ochratoxin A, cyclopiazonic acid, sterigmatocystin, citrinin and zearalenone and all 51 samples were negative. Frequently\ud isolated species of Penicillium (13), Aspergillus (five) and Fusarium (one) were cultured on wheat grain, and tested for the production of ochratoxin A, cyclopiazonic acid, sterigmatocystin, citrinin, patulin and penicillic acid. All 12 isolates of P. citrinin and one of two A. flavipes isolates produced citrinin. A single isolate of A. versicolor produced sterigmatocystin. No other mycotoxins\ud were detected in these cultures.\ud \ud Conclusions: no evidence was found of systemic mycotoxin contamination of sago starch. However, the isolation of several mycotoxigenic fungi shows the potential for citrinin and other mycotoxins to be produced in sago stored\ud under special conditions.\ud \ud Significance and Impact of the study: sago starch is the staple carbohydrate in lowland PNG and the absence of mycotoxins in freshly prepared sago starch is a positive finding. However, the frequent isolation of citrinin-producing fungi indicates a potential health risk for sago consumers, and food safety is dependant on promoting good storage practices

    Taxonomy of Penicillium section Citrina

    Get PDF
    Species of Penicillium section Citrina have a worldwide distribution and occur commonly in soils. The section is here delimited using a combination of phenotypic characters and sequences of the nuclear ribosomal RNA gene operon, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S nrDNA (ITS) and partial RPB2 sequences. Species assigned to section Citrina share the production of symmetrically biverticillate conidiophores, flask shaped phialides (7.0–9.0 μm long) and relatively small conidia (2.0–3.0 μm diam). Some species can produce greyish-brown coloured cleistothecia containing flanged ascospores. In the present study, more than 250 isolates presumably belonging to section Citrina were examined using a combined analysis of phenotypic and physiological characters, extrolite profiles and ITS, β-tubulin and/or calmodulin sequences. Section Citrina includes 39 species, and 17 of those are described here as new. The most important phenotypic characters for distinguishing species are growth rates and colony reverse colours on the agar media CYA, MEA and YES; shape, size and ornamentation of conidia and the production of sclerotia or cleistothecia. Temperature-growth profiles were made for all examined species and are a valuable character characters for species identification. Species centered around P. citrinum generally have a higher maximum growth temperature (33–36 °C) than species related to P. westlingii (27–33 °C). Extrolite patterns and partial calmodulin and β-tubulin sequences can be used for sequence based identification and resolved all species. In contrast, ITS sequences were less variable and only 55 % of the species could be unambiguously identified with this locus

    Fast High-Quality Noise

    Get PDF

    Geometric Operators on Boolean Functions

    Get PDF

    Extrolites of <i>Aspergillus fumigatus</i> and Other Pathogenic Species in <i>Aspergillus </i>Section <i>Fumigati</i>

    Get PDF
    Aspergillus fumigatus is an important opportunistic human pathogen known for its production of a large array of extrolites. Up to 63 species have been described in Aspergillus section Fumigati, some of which have also been reliably reported to be pathogenic, including A. felis, A. fischeri, A. fumigatiaffinis, A. fumisynnematus, A. hiratsukae, A. laciniosus, A. lentulus, A. novofumigatus, A. parafelis, A. pseudofelis, A. pseudoviridinutans, A. spinosus, A. thermomutatus, and A. udagawae. These species share the production of hydrophobins, melanins, and siderophores and ability to grow well at 37°C, but they only share some small molecule extrolites, that could be important factors in pathogenicity. According to the literature gliotoxin and other exometabolites can be contributing factors to pathogenicity, but these exometabolites are apparently not produced by all pathogenic species. It is our hypothesis that species unable to produce some of these metabolites can produce proxy-exometabolites that may serve the same function. We tabulate all exometabolites reported from species in Aspergillus section Fumigati and by comparing the profile of those extrolites, suggest that those producing many different kinds of exometabolites are potential opportunistic pathogens. The exometabolite data also suggest that the profile of exometabolites are highly specific and can be used for identification of these closely related species

    Rasamsonia, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species

    Get PDF
    The phylogenetic relationship among Geosmithia argillacea, Talaromyces emersonii, Talaromyces byssochlamydoides and other members of the Trichocomaceae was studied using partial RPB2 (RNA polymerase II gene, encoding the second largest protein subunit), Tsr1 (putative ribosome biogenesis protein) and Cct8 (putative chaperonin complex component TCP-1) gene sequences. The results showed that these species form a distinct clade within the Trichocomaceae and Trichocoma paradoxa is phylogenetically most closely related. Based on phenotypic and physiological characters and molecular data, we propose Rasamsonia gen. nov. to accommodate these species. This new genus is distinct from other genera of the Trichocomaceae in being thermotolerant or thermophilic and having conidiophores with distinctly rough walled stipes, olive-brown conidia and ascomata, if present, with a scanty covering. Species within the genus Rasamsonia were distinguished using a combination of phenotypic characters, extrolite patterns, ITS and partial calmodulin and β-tubulin sequences. Rasamsonia brevistipitata sp. nov. is described and five new combinations are proposed
    corecore