65 research outputs found

    Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere (SIGMA) II:inverse modeling with high latitude observations to deduce irregularity physics

    Get PDF
    Ionospheric scintillation is caused by irregularities in the ionospheric electron density. The characterization of ionospheric irregularities is important to further our understanding of the underlying physics. Our goal is to characterize the intermediate (0.1–10 km) to medium (10–100 km) scale high-latitude irregularities which are likely to produce these scintillations. In this paper, we characterize irregularities observed by Global Navigation Satellite System (GNSS) during a geomagnetically active period on 9 March 2012. For this purpose, along with the measurements, we are using the recently developed model: “Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere” (SIGMA). The model is particularly applicable at high latitudes as it accounts for the complicated geometry of the magnetic field lines in these regions and is presented in an earlier paper. We use an inverse modeling technique to derive irregularity parameters by comparing the high rate (50 Hz) GNSS observations to the modeled outputs. In this investigation, we consider experimental observations from both the northern and southern high latitudes. The results include predominance of phase scintillations compared to amplitude scintillations that imply the presence of larger-scale irregularities of sizes above the Fresnel scale at GPS frequencies, and the spectral index ranges from 2.4 to 4.2 and the RMS number density ranges from 3e11 to 2.3e12 el/m3. The best fits we obtained from our inverse method that considers only weak scattering mostly agree with the observations. Finally, we suggest some improvements in order to facilitate the possibility of accomplishing a unique solution to such inverse problems

    Heliophysics and Amateur Radio:Citizen Science Collaborations for Atmospheric, Ionospheric, and Space Physics Research and Operations

    Get PDF
    The amateur radio community is a global, highly engaged, and technical community with an intense interest in space weather, its underlying physics, and how it impacts radio communications. The large-scale observational capabilities of distributed instrumentation fielded by amateur radio operators and radio science enthusiasts offers a tremendous opportunity to advance the fields of heliophysics, radio science, and space weather. Well-established amateur radio networks like the RBN, WSPRNet, and PSKReporter already provide rich, ever-growing, long-term data of bottomside ionospheric observations. Up-and-coming purpose-built citizen science networks, and their associated novel instruments, offer opportunities for citizen scientists, professional researchers, and industry to field networks for specific science questions and operational needs. Here, we discuss the scientific and technical capabilities of the global amateur radio community, review methods of collaboration between the amateur radio and professional scientific community, and review recent peer-reviewed studies that have made use of amateur radio data and methods. Finally, we present recommendations submitted to the U.S. National Academy of Science Decadal Survey for Solar and Space Physics (Heliophysics) 2024–2033 for using amateur radio to further advance heliophysics and for fostering deeper collaborations between the professional science and amateur radio communities. Technical recommendations include increasing support for distributed instrumentation fielded by amateur radio operators and citizen scientists, developing novel transmissions of RF signals that can be used in citizen science experiments, developing new amateur radio modes that simultaneously allow for communications and ionospheric sounding, and formally incorporating the amateur radio community and its observational assets into the Space Weather R2O2R framework. Collaborative recommendations include allocating resources for amateur radio citizen science research projects and activities, developing amateur radio research and educational activities in collaboration with leading organizations within the amateur radio community, facilitating communication and collegiality between professional researchers and amateurs, ensuring that proposed projects are of a mutual benefit to both the professional research and amateur radio communities, and working towards diverse, equitable, and inclusive communities

    Multiscale Drivers of Water Chemistry of Boreal Lakes and Streams

    Get PDF
    The variability in surface water chemistry within and between aquatic ecosystems is regulated by many factors operating at several spatial and temporal scales. The importance of geographic, regional-, and local-scale factors as drivers of the natural variability of three water chemistry variables representing buffering capacity and the importance of weathering (acid neutralizing capacity, ANC), nutrient concentration (total phosphorus, TP), and importance of allochthonous inputs (total organic carbon, TOC) were studied in boreal streams and lakes using a method of variance decomposition. Partial redundancy analysis (pRDA) of ANC, TP, and TOC and 38 environmental variables in 361 lakes and 390 streams showed the importance of the interaction between geographic position and regional-scale variables. Geographic position and regional-scale factors combined explained 15.3% (streams) and 10.6% (lakes) of the variation in ANC, TP, and TOC. The unique variance explained by geographic, regional, and local-scale variables alone was <10%. The largest amount of variance was explained by the pure effect of regional-scale variables (9.9% for streams and 7.8% for lakes), followed by local-scale variables (2.9% and 5.8%) and geographic position (1.8% and 3.7%). The combined effect of geographic position, regional-, and local-scale variables accounted for between 30.3% (lakes) and 39.9% (streams) of the variance in surface water chemistry. These findings lend support to the conjecture that lakes and streams are intimately linked to their catchments and have important implications regarding conservation and restoration (management) endeavors

    Indicators of river system hydromorphological character and dynamics: understanding current conditions and guiding sustainable river management

    Get PDF
    The work leading to this paper received funding from the EU’s FP7 programme under Grant Agreement No. 282656 (REFORM). The Indicators were developed within the context of REFORM deliverable D2.1, therefore all partners involved in this deliverable contributed to some extent to their discussion and development

    Natural parenting : back to basics in infant care

    Get PDF
    Peer reviewe

    A General Protocol for Restoration of Regulated Rivers

    Get PDF
    Large catchment basins may be viewed as ecosystems in which natural and cultural attributes interact. Contemporary river ecology emphasizes the four-dimensional nature of the river continuum and the propensity for riverine biodiversity and bioproduction to be largely controlled by habitat maintenance processes, such as cut and fill alluviation mediated by catchment water yield. Stream regulation reduces annual flow amplitude, increases baseflow variation and changes temperature, mass transport and other important biophysical patterns and attributes. As a result, ecological connectivity between upstream and downstream reaches and between channels, ground waters and floodplains may be severed. Native biodiversity and bioproduction usually are reduced or changed and non-native biota proliferate.Regulated rivers regain normative attributes as distance from the dam increases and in relation to the mode of dam operation. Therefore, dam operations can be used to restructure altered temperature and flow regimes which, coupled with pollution abatement and management of non-native biota, enables natural processes to restore damaged habitats along the river’s course. The expectation is recovery of depressed populations of native species. The protocol requires: restoring peak flows needed to reconnect and periodically reconfigure channel and floodplain habitats; stabilizing baseflows to revitalize food-webs in shallow water habitats; reconstituting seasonal temperature patterns (e.g. by construction of depth selective withdrawal systems on storage dams); maximizing dam passage to allow recovery of fish metapopulation structure; instituting a management belief system that relies upon natural habitat restoration and maintenance, as opposed to artificial propagation, installation of artificial in-stream structures (river engineering) and predator control; and, practising adaptive ecosystem management.Our restoration protocol should be viewed as an hypothesis derived from the principles of river ecology. Although restoration to aboriginal state is not expected, nor necessarily desired, recovering some large portion of the lost capacity to sustain native biodiversity and bioproduction is possible by management for processes that maintain normative habitat conditions. The cost may be less than expected because the river can do most of the work
    • …
    corecore