40 research outputs found

    Electrostatics of Colloidal Particles Confined in Nanochannels: Role of Double-Layer Interactions and Ion-Ion Correlations

    Full text link
    We perform computational investigations of electrolyte-mediated interactions of charged colloidal particles confined within nanochannels. We investigate the role of discrete ion effects, valence, and electrolyte strength on colloid-wall interactions. We find for some of the multivalent charge regimes that the like-charged colloids and walls can have attractive interactions. We study in detail these interactions and the free energy profile for the colloid-wall separation. We find there are energy barriers and energy minima giving preferred colloid locations in the channel near the center and at a distance near to but separated from the channel walls. We characterize contributions from surface overcharging, condensed layers, and overlap of ion double-layers. We perform our investigations using Coarse-Grained Brownian Dynamics simulations (BD), classical Density Functional Theory (cDFT), and mean-field Poisson-Boltzmann Theory (PB). We discuss the implications of our results for phenomena in nanoscale devices.Comment: 23 figure

    Improved United Atom Force Field for Poly(dimethylsiloxane)

    No full text

    Self-Diffusion with Dynamic Dilution in Star Polymer Melts

    No full text

    Electrostatics of Nanoparticle–Wall Interactions within Nanochannels: Role of Double-Layer Structure and Ion–Ion Correlations

    Get PDF
    We perform computational investigations of the electrolyte-mediated interactions of charged nanoparticles with the walls of nanochannels. We investigate the role of discrete ion effects, valence, and electrolyte strength on nanoparticle–wall interactions. We find for some of the multivalent charge regimes that the like-charged nanoparticles and walls can have attractive interactions. We study in detail these interactions and the free-energy profile for the nanoparticle–wall separation. We find there are energy barriers and energy minima giving preferred nanoparticle locations in the channel near the center and at a distance near to but separated from the channel walls. We characterize contributions from surface overcharging, condensed layers, and overlap of ion double layers. We perform our investigations using coarse-grained particle-level simulations with Brownian dynamics, classical density functional theory, and the mean-field Poisson–Boltzmann theory. We discuss the implications of our results for phenomena in nanoscale devices
    corecore