16,936 research outputs found

    An update on the double cascade scenario in two-dimensional turbulence

    Get PDF
    Statistical features of homogeneous, isotropic, two-dimensional turbulence is discussed on the basis of a set of direct numerical simulations up to the unprecedented resolution 32768232768^2. By forcing the system at intermediate scales, narrow but clear inertial ranges develop both for the inverse and for direct cascades where the two Kolmogorov laws for structure functions are, for the first time, simultaneously observed. The inverse cascade spectrum is found to be consistent with Kolmogorov-Kraichnan prediction and is robust with respect the presence of an enstrophy flux. The direct cascade is found to be more sensible to finite size effects: the exponent of the spectrum has a correction with respect theoretical prediction which vanishes by increasing the resolution

    Taxation and the Location of U.S. Investment Abroad

    Get PDF
    Tax policy toward the overseas income of U.S. firms is an important issue since foreign investment accounts for a sizabLe fraction of total investment by U.S. firms. At present there is no consensus on the degree to which U.S. firms respond to tax incentives when making international investment decisions. This paper seeks to shed light on this issue. Because the tax systems of (at least) two countries are involved,the specification of tax incentives is far from trivial. For example, U.S.treatment is based on the foreign tax credit mechanism. In its purest form,this mechanism would insure that the net tax rate on all income of U.S. firms would be equal to the U.S. rate, rendering the tax rates in the host countries irrelevant. In fact, actual U.S. tax practice is far removed from an idealized foreign tax credit mechanism. For instance the U.S. tax is not collected until income is repatriated from abroad; section I points out that deferral changes the incentive effects in fundamental ways. Foreign income tax rates definitely do matter in theory; in fact, they may be of overriding importance.The remainder of the paper seeks to test these theoretical considerations. First,we describe the cross-section data that were collected for this purpose. Then, we report the result that U.S. firms respond to net rates of return in general and to properly specified tax rates in particular.

    Performance characteristics of wind profiling radars

    Get PDF
    Doppler radars used to measure winds in the troposphere and lower stratosphere for weather analysis and forecasting are lower-sensitivity versions of mesosphere-stratosphere-troposphere radars widely used for research. The term wind profiler is used to denote these radars because measurements of vertical profiles of horizontal and vertical wind are their primary function. It is clear that wind profilers will be in widespread use within five years: procurement of a network of 30 wind profilers is underway. The Wave Propagation Laboratory (WPL) has operated a small research network of radar wind profilers in Colorado for about two and one-half years. The transmitted power and antenna aperture for these radars is given. Data archiving procedures have been in place for about one year, and this data base is used to evaluate the performance of the radars. One of the prime concerns of potential wind profilers users is how often and how long wind measurements are lacking at a given height. Since these outages constitute an important part of the performance of the wind profilers, they are calculated at three radar frequencies, 50-, 405-, and 915-MHz, (wavelengths of 6-, 0.74-, and 0.33-m) at monthly intervals to determine both the number of outages at each frequency and annual variations in outages

    Computational coarse graining of a randomly forced 1-D Burgers equation

    Full text link
    We explore a computational approach to coarse graining the evolution of the large-scale features of a randomly forced Burgers equation in one spatial dimension. The long term evolution of the solution energy spectrum appears self-similar in time. We demonstrate coarse projective integration and coarse dynamic renormalization as tools that accelerate the extraction of macroscopic information (integration in time, self-similar shapes, and nontrivial dynamic exponents) from short bursts of appropriately initialized direct simulation. These procedures solve numerically an effective evolution equation for the energy spectrum without ever deriving this equation in closed form.Comment: 21 pages, 7 figure

    Identification of the Atomic Scale Structures of the Gold-Thiol Interfaces of Molecular Nanowires by Inelastic Tunneling Spectroscopy

    Full text link
    We examine theoretically the effects of the bonding geometries at the gold-thiol interfaces on the inelastic tunneling spectra of propanedithiolate (PDT) molecules bridging gold electrodes and show that inelastic tunneling spectroscopy combined with theory can be used to determine these bonding geometries experimentally. With the help of density functional theory, we calculate the relaxed geometries and vibrational modes of extended molecules each consisting of one or two PDT molecules connecting two gold nanoclusters. We formulate a perturbative theory of inelastic tunneling through molecules bridging metal contacts in terms of elastic transmission amplitudes, and use this theory to calculate the inelastic tunneling spectra of the gold-PDT-gold extended molecules. We consider PDT molecules with both trans and gauche conformations bound to the gold clusters at top, bridge and hollow bonding sites. Comparing our results with the experimental data of Hihath et al. [Nano Lett. 8, 1673 (2008)], we identify the most frequently realized conformation in the experiment as that of trans molecules top-site bonded to both electrodes. We find the switching from the 42 meV vibrational mode to the 46 meV mode observed in the experiment to be due to the transition of trans molecules from mixed top-bridge to pure top-site bonding geometries. Our results also indicate that gauche molecular conformations and hollow site bonding did not contribute significantly to the experimental inelastic tunneling spectra. For pairs of PDT molecules connecting the gold electrodes in parallel we find total elastic conductances close to twice those of single molecules bridging the contacts with similar bonding conformations and small splittings of the vibrational mode energies for the modes that are the most sensitive to the molecule-electrode bonding geometries.Comment: 14 pages, 8 figures, 1 table. arXiv admin note: significant text overlap with arXiv:1103.2378; http://jcp.aip.org/resource/1/jcpsa6/v136/i1/p014703_s

    Unusual conductance of polyyne-based molecular wires

    Full text link
    We report a full self-consistent ab initio calculation of the current-voltage curve and the conductance of thiolate capped polyynes in contact with gold electrodes. We find the conductance of polyynes an order of magnitude larger compared with other conjugated oligomers. The reason lies in the position of the Fermi level deep in the HOMO related resonance. With the conductance weakly dependent on the applied bias and almost independent of the length of the molecular chain, polyynes appear as nearly perfect molecular wires.Comment: 4 pages, 5 figures, 3 table

    Experimental evidence of accelerated energy transfer in turbulence

    Full text link
    We investigate the vorticity dynamics in a turbulent vortex using scattering of acoustic waves. Two ultrasonic beams are adjusted to probe simultaneously two spatial scales in a given volume of the flow, thus allowing a dual channel recording of the dynamics of coherent vorticity structures. Our results show that this allows to measure the average energy transfer time between different spatial length scales, and that such transfer goes faster at smaller scales.Comment: 5 pages, 5 figure

    Consequences of a Change in the Galactic Environment of the Sun

    Get PDF
    The interaction of the heliosphere with interstellar clouds has attracted interest since the late 1920's, both with a view to explaining apparent quasi-periodic climate "catastrophes" as well as periodic mass extinctions. Until recently, however, models describing the solar wind - local interstellar medium (LISM) interaction self-consistently had not been developed. Here, we describe the results of a two-dimensional (2D) simulation of the interaction between the heliosphere and an interstellar cloud with the same properties as currently, except that the neutral H density is increased from the present value of n(H) ~ 0.2 cm^-3 to 10 cm^-3. The mutual interaction of interstellar neutral hydrogen and plasma is included. The heliospheric cavity is reduced considerably in size (approximately 10 - 14 AU to the termination shock in the upstream direction) and is highly dynamical. The interplanetary environment at the orbit of the Earth changes markedly, with the density of interstellar H increasing to ~2 cm^-3. The termination shock itself experiences periods where it disappears, reforms and disappears again. Considerable mixing of the shocked solar wind and LISM occurs due to Rayleigh-Taylor-like instabilities at the nose, driven by ion-neutral friction. Implications for two anomalously high concentrations of 10Be found in Antarctic ice cores 33 kya and 60 kya, and the absence of prior similar events, are discussed in terms of density enhancements in the surrounding interstellar cloud. The calculation presented here supports past speculation that the galactic environment of the Sun moderates the interplanetary environment at the orbit of the Earth, and possibly also the terrestrial climate.Comment: 23 pages, 2 color plates (jpg), 3 figures (eps

    Universal decay of scalar turbulence

    Full text link
    The asymptotic decay of passive scalar fields is solved analytically for the Kraichnan model, where the velocity has a short correlation time. At long times, two universality classes are found, both characterized by a distribution of the scalar -- generally non-Gaussian -- with global self-similar evolution in time. Analogous behavior is found numerically with a more realistic flow resulting from an inverse energy cascade.Comment: 4 pages, 3 Postscript figures, submitted to PR
    • …
    corecore