3 research outputs found

    Comparative genomics of Esx genes from clinical isolates of Mycobacterium tuberculosis provides evidence for gene conversion and epitope variation

    No full text
    The 23-membered Esx protein family is involved in the host-pathogen interactions of Mycobacterium tuberculosis. These secreted proteins are among the most immunodominant antigens recognized by the human immune system and have thus been used to develop vaccines and immunodiagnostic tests for tuberculosis (TB). Gene pairs for 10 Esx proteins are contained in the ESX-1 to ESX-5 loci, encoding type VII secretion systems. A subset of Esx proteins can be further classified into the Mtb9.9, QILSS, and TB10.4 subfamilies. To survey genetic diversity in the Esx family and its potential for antigenic variation, we sequenced all esx genes from 108 clinical isolates of M. tuberculosis from different clades by using a targeted approach. A total of 109 unique single nucleotide polymorphisms (SNPs) were observed, and 59 of these were nonsynonymous. Some of the resultant amino acid substitutions affect known Esx epitopes, including two in the EsxB (CFP-10) and EsxH (TB10.4) antigens. Assessment of the SNP distribution across the Esx proteins revealed high genetic variability, especially in the Mtb9.9 and QILSS subfamilies, and more conservation in the ESX-1 to ESX-4 loci. Comparison of the DNA sequences of variable esx genes provided clear evidence for recombination events between different genes in the same strain, some of which are predicted to truncate the corresponding protein. Many of these polymorphisms escape detection by ultrahigh-throughput sequencing using short sequence reads, as such approaches cannot distinguish between closely related genes. The esx gene family is dynamic, and sequence changes likely lead to immune variation

    Molecular Detection of Cellulosimicrobium cellulans as the Etiological Agent of a Chronic Tongue Ulcer in a Human Immunodeficiency Virus-Positive Patient

    No full text
    Ulcerations appeared on the tongue of a 48-year-old human immunodeficiency virus-positive man. Histological findings of the biopsy specimen and the fact that the patient had resided in Louisiana led us to suspect “American histoplasmosis.” A new ulcer appeared while the patient was being treated with itraconazole, and the gene for 16S rRNA of Cellulosimicrobium cellulans was amplified. The lesions healed during treatment with oral penicillin and azithromycin

    Cbs overdosage is necessary and sufficient to induce cognitive phenotypes in mouse models of Down syndrome and interacts genetically with Dyrk1a

    Get PDF
    International audienceIdentifying dosage-sensitive genes is a key to understand the mechanisms underlying intellectual disability in Down syndrome (DS). The Dp(17Abcg1-Cbs)1Yah DS mouse model (Dp1Yah) shows cognitive phenotypes that need to be investigated to identify the main genetic driver. Here, we report that three copies of the cystathionine-beta-synthase gene (Cbs) in the Dp1Yah mice are necessary to observe a deficit in the novel object recognition (NOR) paradigm. Moreover, the overexpression of Cbs alone is sufficient to induce deficits in the NOR test. Accordingly, overexpressing human CBS specifically in Camk2a-expressing neurons leads to impaired objects discrimination. Altogether, this shows that Cbs overdosage is involved in DS learning and memory phenotypes. To go further, we identified compounds that interfere with the phenotypical consequence of CBS overdosage in yeast. Pharmacological intervention in Tg(CBS) mice with one selected compound restored memory in the NOR test. In addition, using a genetic approach, we demonstrated an epistatic interaction between Cbs and Dyrk1a, another human chromosome 21-located gene (which encodes the dual-specificity tyrosine phosphorylation-regulated kinase 1a) and an already known target for DS therapeutic intervention. Further analysis using proteomic approaches highlighted several molecular pathways, including synaptic transmission
    corecore