7 research outputs found

    A redução da pressão de perfusão coronariana está associada com a fibrose endocárdica no modelo de hipertrofia por sobrecarga de volume em ratos

    Get PDF
    Left ventricular hypertrophy following volume overload is regarded as an example of cardiac remodeling without increased fibrosis accumulation. However, infarction is associated with increased fibrosis within the noninfarcted, hypertrophied myocardium, particularly in the subendocardial regions. It is conceivable to suppose that, as also occurs postinfarction, low coronary driving pressure may also interfere with accumulation of myocardial fibrosis following aortocaval fistula. PURPOSE: To investigate the role of acute hemodynamic changes in subsequent deposition of cardiac fibrosis in response to aortocaval fistula. METHOD: Aortocaval fistula were created in 4 groups of Wistar rats that were followed over 4 and 8 weeks: aortocaval fistula 4 and aortocaval fistula 8 (10 rats each) and their respective controls (sham-operated controls - Sh), Sh4 and Sh8 (8 rats each). Hemodynamic measurements were performed 1 week after surgery. Hypertrophy and fibrosis were quantified by myocyte diameter and collagen volume fraction at the end of follow up. RESULT: Compared with Sh4 and Sh8, pulse pressure, left ventricular end-diastolic pressure, and +dP/dt were higher in aortocaval fistula 4 and aortocaval fistula 8, but -dP/dt was similar. Coronary driving pressure (mm Hg), used as an estimate of perfusion pressure, was lower in aortocaval fistula 8 (52.6 ± 4.1) than in Sh8 (100.8 ± 1.3), but comparable between aortocaval fistula 4 (50.0 ± 8.9) and Sh4 (84.8 ± 2.3). Myocyte diameter was greater in aortocaval fistula 8, whereas interstitial and subendocardial fibrosis were greater in aortocaval fistula 4 and aortocaval fistula 8. Coronary driving pressure correlated inversely and independently with subendocardial fibrosis (r² = .86, PNo remodelamento que se segue às sobrecargas de volume não é descrito o aumento de fibrose miocárdica. Após o infarto, entretanto, há hipertrofia do miocárdio remoto com acúmulo de fibrose, particularmente no subendocárdio. Na fístula aorto-cava, tal como no infarto, é possível que a queda da pressão de perfusão coronariana interfira com a fibrose cardíaca. OBJETIVO: Investigar o papel das mudanças hemodinâmicas agudas sobre a fibrose cardíaca na fístula aorto-cava. MÉTODO: Ratos Wistar submetidos a fístula aorto-cava, seguidos por 4 e 8 semanas, constituíram 4 grupos, fístula aorto-cava 4 e fístula aorto-cava 8 (10 ratos cada) e seus respectivos controles (sham-operated controls - Sh), Sh4 e Sh8 (8 ratos cada). A hemodinâmica foi realizada 1 semana após a cirurgia. A hipertrofia e a fibrose foram quantificadas ao final do seguimento pelo diâmetro dos miócitos e pela fração de volume do colágeno. RESULTADOS: Comparados com Sh4 e Sh8, a pressão de pulso, a pressão diastólica final do ventrículo esquerdo e a +dP/dt foram maiores em fístula aorto-cava 4 e fístula aorto-cava 8, enquanto a -dP/dt foi similar. A pressão estimada da perfusão coronariana (mmHg) foi menor em fístula aorto-cava 8 (52,6±4,1) do que em Sh8 (100,8±1,3), mas comparável entre fístula aorto-cava 4 (50,0±8,9) e Sh4 (84,8±2,3). O diâmetro dos miócitos foi maior em fístula aorto-cava 8 e a fibrose intersticial e subendocárdica maior em fístula aorto-cava 4 e fístula aorto-cava 8. Houve correlação inversa e independente da pressão de perfusão coronariana com a fibrose subendocárdica (r²=0,86;

    Subendocardial fibrosis in remote myocardium results from reduction of coronary driving pressure during acute infarction in rats

    No full text
    OBJECTIVE: To investigate the role of hemodynamic changes occurring during acute MI in subsequent fibrosis deposition within non-MI. METHODS: By using the rat model of MI, 3 groups of 7 rats each [sham, SMI (MI <30%), and LMI (MI >30%)] were compared. Systemic and left ventricular (LV) hemodynamics were recorded 10 minutes before and after coronary artery ligature. Collagen volume fraction (CVF) was calculated in picrosirius red-stained heart tissue sections 4 weeks later. RESULTS: Before surgery, all hemodynamic variables were comparable among groups. After surgery, LV end-diastolic pressure increased and coronary driving pressure decreased significantly in the LMI compared with the sham group. LV dP/dt max and dP/dt min of both the SMI and LMI groups were statistically different from those of the sham group. CVF within non-MI interventricular septum and right ventricle did not differ between each MI group and the sham group. Otherwise, subendocardial (SE) CVF was statistically greater in the LMI group. SE CVF correlated negatively with post-MI systemic blood pressure and coronary driving pressure, and positively with post-MI LV dP/dt min. Stepwise regression analysis identified post-MI coronary driving pressure as an independent predictor of SE CVF. CONCLUSION: LV remodeling in rats with MI is characterized by predominant SE collagen deposition in non-MI and results from a reduction in myocardial perfusion pressure occurring early on in the setting of MI

    Apical aneurysm and left ventricular hypertrophy

    No full text
    A 59-year-old woman presented with an embolic transient ischemic attack and a history of controlled hypertension for 16 years. Both echocardiogram and MRI showed severe biventricular hypertrophy and an apical aneurysm with a thrombus. The occurrence of an apical aneurysm in the presence of cardiac hypertrophy is a rare finding and has been described in patients with hypertrophic cardiomyopathy. However, it has not been reported in patients with systemic arterial hypertension. In this patient the lack of a relationship between the severity of the hypertrophy and the levels of blood pressure, together with the presence of histologic disorganization of myocardial cardiac muscle cells by endomyocardial biopsy suggested the diagnosis of hypertrophic cardiomyopathy

    Coronary reserve impairment prevents the improvement of left ventricular dysfunction and adversely affects the long-term outcome of patients with hypertensive dilated cardiomyopathy

    No full text
    In hypertension, left ventricular (LV) hypertrophy develops as an adaptive mechanism to compensate for increased afterload and thus preserve systolic function. Associated structural changes such as microvascular disease might potentially interfere with this mechanism, producing pathological hypertrophy. A poorer outcome is expected to occur when LV function is put in jeopardy by impaired coronary reserve. The aim of this study was to evaluate the role of coronary reserve in the long-term outcome of patients with hypertensive dilated cardiomyopathy. Between 1996 and 2000, 45 patients, 30 of them male, with 52 +/- 11 years and LV fractional shortening <30% were enrolled and followed until 2006. Coronary flow velocity reserve was assessed by transesophageal Doppler of the left anterior descending coronary artery. Sixteen patients showed >= 10% improvement in LV fractional shortening after 17 +/- 6 months. Coronary reserve was the only variable independently related to this improvement. Total mortality was 38% in 10 years. The Cox model identified coronary reserve (hazard ratio = 0.814; 95% CI = 0.72-0.92), LV mass, low diastolic blood pressure, and male gender as independent predictors of mortality. In hypertensive dilated cardiomyopathy, coronary reserve impairment adversely affects survival, possibly by interfering with the improvement of LV dysfunction. J Am Soc Hypertens 2010;4(1):14-21. (C) 2010 American Society of Hypertension. All rights reserved
    corecore