661 research outputs found

    Snow metamorphism: a fractal approach

    Full text link
    Snow is a porous disordered medium consisting of air and three water phases: ice, vapour and liquid. The ice phase consists of an assemblage of grains, ice matrix, initially arranged over a random load bearing skeleton. The quantitative relationship between density and morphological characteristics of different snow microstructures is still an open issue. In this work, a three-dimensional fractal description of density corresponding to different snow microstructure is put forward. First, snow density is simulated in terms of a generalized Menger sponge model. Then, a fully three-dimensional compact stochastic fractal model is adopted. The latter approach yields a quantitative map of the randomness of the snow texture, which is described as a three-dimensional fractional Brownian field with the Hurst exponent H varying as continuous parameter. The Hurst exponent is found to be strongly dependent on snow morphology and density. The approach might be applied to all those cases where the morphological evolution of snow cover or ice sheets should be conveniently described at a quantitative level

    A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data

    Get PDF
    Wavelets are scaleable, oscillatory functions that deviate from zero only within a limited spatial regime and have average value zero. In addition to their use as source characterizers, wavelet functions are rapidly gaining currency within the source detection field. Wavelet-based source detection involves the correlation of scaled wavelet functions with binned, two-dimensional image data. If the chosen wavelet function exhibits the property of vanishing moments, significantly non-zero correlation coefficients will be observed only where there are high-order variations in the data; e.g., they will be observed in the vicinity of sources. In this paper, we describe the mission-independent, wavelet-based source detection algorithm WAVDETECT, part of the CIAO software package. Aspects of our algorithm include: (1) the computation of local, exposure-corrected normalized (i.e. flat-fielded) background maps; (2) the correction for exposure variations within the field-of-view; (3) its applicability within the low-counts regime, as it does not require a minimum number of background counts per pixel for the accurate computation of source detection thresholds; (4) the generation of a source list in a manner that does not depend upon a detailed knowledge of the point spread function (PSF) shape; and (5) error analysis. These features make our algorithm considerably more general than previous methods developed for the analysis of X-ray image data, especially in the low count regime. We demonstrate the algorithm's robustness by applying it to various images.Comment: Accepted for publication in Ap. J. Supp. (v. 138 Jan. 2002). 61 pages, 23 figures, expands to 3.8 Mb. Abstract abridged for astro-ph submissio

    Near Real-Time Data Labeling Using a Depth Sensor for EMG Based Prosthetic Arms

    Full text link
    Recognizing sEMG (Surface Electromyography) signals belonging to a particular action (e.g., lateral arm raise) automatically is a challenging task as EMG signals themselves have a lot of variation even for the same action due to several factors. To overcome this issue, there should be a proper separation which indicates similar patterns repetitively for a particular action in raw signals. A repetitive pattern is not always matched because the same action can be carried out with different time duration. Thus, a depth sensor (Kinect) was used for pattern identification where three joint angles were recording continuously which is clearly separable for a particular action while recording sEMG signals. To Segment out a repetitive pattern in angle data, MDTW (Moving Dynamic Time Warping) approach is introduced. This technique is allowed to retrieve suspected motion of interest from raw signals. MDTW based on DTW algorithm, but it will be moving through the whole dataset in a pre-defined manner which is capable of picking up almost all the suspected segments inside a given dataset an optimal way. Elevated bicep curl and lateral arm raise movements are taken as motions of interest to show how the proposed technique can be employed to achieve auto identification and labelling. The full implementation is available at https://github.com/GPrathap/OpenBCIPytho

    Processor Allocation for Optimistic Parallelization of Irregular Programs

    Full text link
    Optimistic parallelization is a promising approach for the parallelization of irregular algorithms: potentially interfering tasks are launched dynamically, and the runtime system detects conflicts between concurrent activities, aborting and rolling back conflicting tasks. However, parallelism in irregular algorithms is very complex. In a regular algorithm like dense matrix multiplication, the amount of parallelism can usually be expressed as a function of the problem size, so it is reasonably straightforward to determine how many processors should be allocated to execute a regular algorithm of a certain size (this is called the processor allocation problem). In contrast, parallelism in irregular algorithms can be a function of input parameters, and the amount of parallelism can vary dramatically during the execution of the irregular algorithm. Therefore, the processor allocation problem for irregular algorithms is very difficult. In this paper, we describe the first systematic strategy for addressing this problem. Our approach is based on a construct called the conflict graph, which (i) provides insight into the amount of parallelism that can be extracted from an irregular algorithm, and (ii) can be used to address the processor allocation problem for irregular algorithms. We show that this problem is related to a generalization of the unfriendly seating problem and, by extending Tur\'an's theorem, we obtain a worst-case class of problems for optimistic parallelization, which we use to derive a lower bound on the exploitable parallelism. Finally, using some theoretically derived properties and some experimental facts, we design a quick and stable control strategy for solving the processor allocation problem heuristically.Comment: 12 pages, 3 figures, extended version of SPAA 2011 brief announcemen

    StreamJIT: A Commensal Compiler for High-Performance Stream Programming

    Get PDF
    There are many domain libraries, but despite the performance benefits of compilation, domain-specific languages are comparatively rare due to the high cost of implementing an optimizing compiler. We propose commensal compilation, a new strategy for compiling embedded domain-specific languages by reusing the massive investment in modern language virtual machine platforms. Commensal compilers use the host language's front-end, use host platform APIs that enable back-end optimizations by the host platform JIT, and use an autotuner for optimization selection. The cost of implementing a commensal compiler is only the cost of implementing the domain-specific optimizations. We demonstrate the concept by implementing a commensal compiler for the stream programming language StreamJIT atop the Java platform. Our compiler achieves performance 2.8 times better than the StreamIt native code (via GCC) compiler with considerably less implementation effort.United States. Dept. of Energy. Office of Science (X-Stack Award DE-SC0008923)Intel Corporation (Science and Technology Center for Big Data)SMART3 Graduate Fellowshi

    Growth form and leaf habit drive contrasting effects of Arctic amplification in long-lived woody species

    Get PDF
    Current global change is inducing heterogeneous warming trends worldwide, with faster rates at higher latitudes in the Northern Hemisphere. Consequently, tundra vegetation is experiencing an increase in growth rate and uneven but expanding distribution. Yet, the drivers of this heterogeneity in woody species responses are still unclear. Here, applying a retrospective approach and focusing on long-term responses, we aim to get insight into growth trends and climate sensitivity of long-lived woody species belonging to different functional types with contrasting growth forms and leaf habits (shrub vs. tree and deciduous vs. evergreen). A total of 530 samples from 7 species (common juniper, dwarf birch, woolly willow, Norway spruce, lodgepole pine, rowan, and downy birch) were collected in 10 sites across Iceland. We modelled growth trends and contrasted yearly ring-width measurements, filtering in high- and low-frequency components, with precipitation, land- and sea-surface temperature records (1967-2018). Shrubs and trees showed divergent growth trends, with shrubs closely tracking the recent warming, whereas trees, especially broadleaved, showed strong fluctuations but no long-term growth trends. Secondary growth, particularly the high-frequency component, was positively correlated with summer temperatures for most of the species. On the contrary, growth responses to sea surface temperature, especially in the low frequency, were highly diverging between growth forms, with a strong positive association for shrubs and a negative for trees. Within comparable vegetation assemblage, long-lived woody species could show contrasting responses to similar climatic conditions. Given the predominant role of oceanic masses in shaping climate patterns in the Arctic and Low Arctic, further investigations are needed to deepen the knowledge on the complex interplay between coastal tundra ecosystems and land-sea surface temperature dynamics

    Partial Photoionization Cross Sections And Photoelectron Angular Distributions For Double Excitations Up To The N=5 Threshold In Helium

    Get PDF
    Partial photoionization cross sections sigma(n) and photoelectron angular distributions beta(n) were measured for all possible final ionic states He+(n) in the region of the double excitations N(K,T)(A) up to the N=5 threshold. At a photon energy bandpass of 12 meV below the thresholds N=3,4, and 5, this level of differentiation offers the most critical assessment of the dynamics of the two-electron excitations to date. The experimental data are very well described by the most advanced theoretical calculations. Weaker double-excitation series with K=N-4 are clearly visible in the beta(n) data, and even previously unobserved extremely weak series members with A=-1 can be discerned, showing the high sensitivity of the angular resolved measurements. The shapes of the resonance-induced variations of sigma(n) or beta(n) in the double excitations below a given threshold N change radically depending on the final ionic state n but display striking similarities when comparing the satellite states with n=N-1 and n=N-2 below each threshold N. These systematic patterns may indicate a general rule for the underlying two-electron dynamics

    A new experimental snow avalanche test site at Seehore peak in Aosta Valley (NW Italian Alps) - Part II: Engineering aspects

    Get PDF
    The estimate of the effects produced by the impact of a snow avalanche against an obstacle is of the utmost importance in designing safe mountain constructions. For this purpose, an ad-hoc instrumented obstacle was designed and built in order to measure impact forces of small and medium snow avalanches at Seehore peak (NW Italian Alps). The structural design had to consider several specific and unusual demands dictated by the difficult environment. In this article, the new test facility is described from the engineering point of view, discussing the most important aspects of the analyzed problems which were solved before and after the construction. The performance of the instrumented obstacle in the first two operating seasons, and some proposals for future upgrading are eventually illustrate

    Investigations of solutions of Einstein's field equations close to lambda-Taub-NUT

    Full text link
    We present investigations of a class of solutions of Einstein's field equations close to the family of lambda-Taub-NUT spacetimes. The studies are done using a numerical code introduced by the author elsewhere. One of the main technical complication is due to the S3-topology of the Cauchy surfaces. Complementing these numerical results with heuristic arguments, we are able to yield some first insights into the strong cosmic censorship issue and the conjectures by Belinskii, Khalatnikov, and Lifschitz in this class of spacetimes. In particular, the current investigations suggest that strong cosmic censorship holds in this class. We further identify open issues in our current approach and point to future research projects.Comment: 24 pages, 12 figures, uses psfrag and hyperref; replaced with published version, only minor corrections of typos and reference

    Pierce the ear and stab the spleen

    Get PDF
    Splenic abscess is a rare but extremely dangerous condition generally spreading from a local, or systemic, focus of infection. We present the case of a young immunocompetent female admitted with sepsis and multiple splenic abscesses. The patient had a recent left ear piercing on the tragus complicated by an ear infection. The presence of a solitary parotid abscess, the absence of other infectious foci on computed tomography scan, the negativity of blood cultures and the absence of endocarditis vegetations led us to think that the most likely culprit was a hematogenous dissemination from the left tragus. The patient was successfully treated with intravenous antibiotics. There had been no need of splenectomy or any other procedure. This rather unique case underscores that splenic abscess should be suspected when a long-lasting fever and pain in the left hypochondrium are present, even when an apparently innocuous invasive procedure, such as a body piercing, is performed
    • …
    corecore