50 research outputs found
Fully-dynamic Approximation of Betweenness Centrality
Betweenness is a well-known centrality measure that ranks the nodes of a
network according to their participation in shortest paths. Since an exact
computation is prohibitive in large networks, several approximation algorithms
have been proposed. Besides that, recent years have seen the publication of
dynamic algorithms for efficient recomputation of betweenness in evolving
networks. In previous work we proposed the first semi-dynamic algorithms that
recompute an approximation of betweenness in connected graphs after batches of
edge insertions.
In this paper we propose the first fully-dynamic approximation algorithms
(for weighted and unweighted undirected graphs that need not to be connected)
with a provable guarantee on the maximum approximation error. The transfer to
fully-dynamic and disconnected graphs implies additional algorithmic problems
that could be of independent interest. In particular, we propose a new upper
bound on the vertex diameter for weighted undirected graphs. For both weighted
and unweighted graphs, we also propose the first fully-dynamic algorithms that
keep track of such upper bound. In addition, we extend our former algorithm for
semi-dynamic BFS to batches of both edge insertions and deletions.
Using approximation, our algorithms are the first to make in-memory
computation of betweenness in fully-dynamic networks with millions of edges
feasible. Our experiments show that they can achieve substantial speedups
compared to recomputation, up to several orders of magnitude
Engineering Graph-Based Models for Dynamic Timetable Information Systems
Many efforts have been done in the last years to model public transport timetables in order to find optimal routes. The proposed models can be classified into two types: those representing the timetable as an array, and those representing it as a graph. The array-based models have been shown to be very effective in terms of query time, while the graph-based models usually answer queries by computing shortest paths, and hence they are suitable to be used in combination with speed-up techniques developed for road networks.
In this paper, we focus on the dynamic behavior of graph-based models considering the case where transportation systems are subject to delays with respect to the given timetable. We make three contributions: (i) we give a simplified and optimized update routine for the well-known time-expanded model along with an engineered query algorithm; (ii) we propose a new graph-based model tailored for handling dynamic updates; (iii) we assess the effectiveness of the proposed models and algorithms by an experimental study, which shows that both models require negligible update time and a query time which is comparable to that required by some array-based models
Dynamic Arc-Flags in Road Networks
International audienceIn this work we introduce a new data structure, named Road-Signs, which allows us to efficiently update the Arc-Flags of a graph in a dynamic scenario. Road-Signs can be used to compute Arc-Flags, can be efficiently updated and do not require large space consumption for many real-world graphs like, e.g., graphs arising from road networks. In detail, we define an algorithm to preprocess Road-Signs and an algorithm to update them each time that a weight increase operation occurs on an edge of the network. We also experimentally analyze the proposed algorithms in real-world road networks showing that they yields a significant speed-up in the updating phase of Arc-Flags, at the cost of a very small space and time overhead in the preprocessing phase
Sentient Spaces: Intelligent Totem Use Case in the ECSEL FRACTAL Project
The objective of the FRACTAL project is to create a novel approach to reliable edge computing. The FRACTAL computing node will be the building block of scalable Internet of Things (from Low Computing to High Computing Edge Nodes). The node will also have the capability of learning how to improve its performance against the uncertainty of the environment. In such a context, this paper presents in detail one of the key use cases: an Internet-of-Things solution, represented by intelligent totems for advertisement and wayfinding services, within advanced ICT-based shopping malls conceived as a sentient space. The paper outlines the reference scenario and provides an overview of the architecture and the functionality of the demonstrator, as well as a roadmap for its development and evaluation
Enhancing the computation of distributed shortest paths on real dynamic networks
International audienceThe problem of finding and updating shortest paths in distributed networks is considered crucial in today's practical applications. In the recent past, there has been a renewed interest in devising new efficient distance-vector algorithms as an attractive alternative to link-state solutions for large-scale Ethernet networks, in which scalability and reliability are key issues or the nodes can have limited storage capabilities. In this paper we present Distributed Computation Pruning (DCP), a new technique, which can be combined with every distance-vector routing algorithm based on shortest paths, allowing to reduce the total number of messages sent by that algorithm and its space occupancy per node. To check its effectiveness, we combined DCP with DUAL (Diffuse Update ALgorithm), one of the most popular distance-vector algorithm in the literature, which is part of CISCO's widely used EIGRP protocol, and with the recently introduced LFR (Loop Free Routing) which has been shown to have good performances on real networks. We give experimental evidence that these combinations lead to a significant gain both in terms of number of messages sent and memory requirements per node
Min-Max Coverage in Multi-interface Networks
International audienceWe consider devices equipped with multiple wired or wireless interfaces. By switching among interfaces or by combining the available interfaces, each device might establish several connections. A connection is established when the devices at its endpoints share at least one active interface. Each interface is assumed to require an activation cost. In this paper, we consider the problem of establishing the connections defined by a network G = (V,E) while keeping as low as possible the maximum cost set of active interfaces at the single nodes. Nodes V represent the devices, edges E represent the connections that must be established. We study the problem of minimizing the maximum cost set of active interfaces among the nodes of the network in order to cover all the edges. We prove that the problem is NP-hard for any fixed Δ ≥ 5 and k ≥ 16, with Δ being the maximum degree, and k being the number of different interfaces among the network. We also show that the problem cannot be approximated within Ω(ln Δ). We then provide a general approximation algorithm which guarantees a factor of O((1 + b)ln (Δ)), with b being a parameter depending on the topology of the input graph. Interestingly, b can be bounded by a constant for many graph classes. Other approximation and exact algorithms for special cases are presented