152 research outputs found

    Atomistic Simulation of Water Percolation and Proton Hopping in Nafion Fuel Cell Membrane

    Get PDF
    We have performed a detailed analysis of water clustering and percolation in hydrated Nafion configurations generated by classical molecular dynamics simulations. Our results show that at low hydration levels H2O molecules are isolated and a continuous hydrogen-bonded network forms as the hydration level is increased. Our quantitative analysis has established a hydration level (λ) between 5 and 6 H2O/SO3− as the percolation threshold of Nafion. We have also examined the effect of such a network on proton transport by studying the structural diffusion of protons using the quantum hopping molecular dynamics method. The mean residence time of the proton on a water molecule decreases by 2 orders of magnitude when the λ value is increased from 5 to 15. The proton diffusion coefficient in Nafion at a λ value of 15 is about 1.1 × 10−5 cm2/s in agreement with experiment. The results provide quantitative atomic-level evidence of water network percolation in Nafion and its effect on proton conductivity

    The SIRT1 promoter polymorphic site rs12778366 increases IL-6 related human mortality in the prospective study “Treviso Longeva (TRELONG)”

    Get PDF
    Studies on sirtuins (SIRT), a family of proteins with deacetylase activity, have provided convergent evidence of the key role of these enzymes in aging-linked physiological functions. The link between SIRT1 and longevity has emerged in model organism but few data are available in humans, in particular relying on longitudinal studies. Here, we assessed whether a genetic variant within SIRT1 gene promoter (rs12778366) was associated to human longevity. We analyzed 586 genomic DNA (gDNA) collected in the study "Treviso Longeva" (TRELONG), including elderly over 70 years of age from the municipality of Treviso, a town in the Northeast of Italy, with a 11-year follow-up. We genotyped SIRT1 rs12778366 by real-time polymerase chain reaction (RT-PCR) allelic discrimination assay. A cross-sectional analysis performed by comparing people over and under 85 years of age did not evidence association between rs12778366 and longevity. When we performed a longitudinal analysis considering mortality as dependent variable, we did not observe an association of rs12778366 with longevity in the whole population (corrected P-value = 0.33). However, when we stratified the TRELONG subjects according to circulating level of interleukin-6 (IL-6), a predictor of disability and mortality, we found that rs12778366 (TC+CC) carriers were at increased risk of mortality in comparison to the TT reference group (corrected P-value = 0.03, HR 1.47). Our data do not support a major role of rs12778366 in human longevity, but the stratified analysis on IL-6 suggests that this variant may be involved in the detrimental effect of high circulating IL-6 in the elderly

    Theoretical Studies of Spectroscopy and Dynamics of Hydrated Electrons.

    Get PDF

    A Fear-Inducing Odor Alters PER2 and c-Fos Expression in Brain Regions Involved in Fear Memory

    Get PDF
    Evidence demonstrates that rodents learn to associate a foot shock with time of day, indicating the formation of a fear related time-stamp memory, even in the absence of a functioning SCN. In addition, mice acquire and retain fear memory better during the early day compared to the early night. This type of memory may be regulated by circadian pacemakers outside of the SCN. As a first step in testing the hypothesis that clock genes are involved in the formation of a time-stamp fear memory, we exposed one group of mice to fox feces derived odor (TMT) at ZT 0 and one group at ZT 12 for 4 successive days. A separate group with no exposure to TMT was also included as a control. Animals were sacrificed one day after the last exposure to TMT, and PER2 and c-Fos protein were quantified in the SCN, amygdala, hippocampus, and piriform cortex. Exposure to TMT had a strong effect at ZT 0, decreasing PER2 expression at this time point in most regions except the SCN, and reversing the normal rhythm of PER2 expression in the amygdala and piriform cortex. These changes were accompanied by increased c-Fos expression at ZT0. In contrast, exposure to TMT at ZT 12 abolished the rhythm of PER2 expression in the amygdala. In addition, increased c-Fos expression at ZT 12 was only detected in the central nucleus of the amygdala in the TMT12 group. TMT exposure at either time point did not affect PER2 or c-Fos in the SCN, indicating that under a light-dark cycle, the SCN rhythm is stable in the presence of repeated exposure to a fear-inducing stimulus. Taken together, these results indicate that entrainment to a fear-inducing stimulus leads to changes in PER2 and c-Fos expression that are detected 24 hours following the last exposure to TMT, indicating entrainment of endogenous oscillators in these regions. The observed effects on PER2 expression and c-Fos were stronger during the early day than during the early night, possibly to prepare appropriate systems at ZT 0 to respond to a fear-inducing stimulus

    An ab initio and AIM investigation into the hydration of 2-thioxanthine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydration is a universal phenomenon in nature. The interactions between biomolecules and water of hydration play a pivotal role in molecular biology. 2-Thioxanthine (2TX), a thio-modified nucleic acid base, is of significant interest as a DNA inhibitor yet its interactions with hydration water have not been investigated either computationally or experimentally. Here in, we reported an <it>ab initio </it>study of the hydration of 2TX, revealing water can form seven hydrated complexes.</p> <p>Results</p> <p>Hydrogen-bond (H-bond) interactions in 1:1 complexes of 2TX with water are studied at the MP2/6-311G(d, p) and B3LYP/6-311G(d, p) levels. Seven 2TX<sup>...</sup>H<sub>2</sub>O hydrogen bonded complexes have been theoretically identified and reported for the first time. The proton affinities (PAs) of the O, S, and N atoms and deprotonantion enthalpies (DPEs) of different N-H bonds in 2TX are calculated, factors surrounding why the seven complexes have different hydrogen bond energies are discussed. The theoretical infrared and NMR spectra of hydrated 2TX complexes are reported to probe the characteristics of the proposed H-bonds. An improper blue-shifting H-bond with a shortened C-H bond was found in one case. NBO and AIM analysis were carried out to explain the formation of improper blue-shifting H-bonds, and the H-bonding characteristics are discussed.</p> <p>Conclusion</p> <p>2TX can interact with water by five different H-bonding regimes, N-H<sup>...</sup>O, O-H<sup>...</sup>N, O-H<sup>...</sup>O, O-H<sup>...</sup>S and C-H<sup>...</sup>O, all of which are medium strength hydrogen bonds. The most stable H-bond complex has a closed structure with two hydrogen bonds (N(7)-H<sup>...</sup>O and O-H<sup>...</sup>O), whereas the least stable one has an open structure with one H-bond. The interaction energies of the studied complexes are correlated to the PA and DPE involved in H-bond formation. After formation of H-bonds, the calculated IR and NMR spectra of the 2TX-water complexes change greatly, which serves to identify the hydration of 2TX.</p

    Circadian Clock and OxInflammation: Functional Crosstalk in Cutaneous Homeostasis

    Get PDF
    Circadian rhythms are biological oscillations that occur with an approximately 24 h period and optimize cellular homeostasis and responses to environmental stimuli. A growing collection of data suggests that chronic circadian disruption caused by novel lifestyle risk factors such as shift work, travel across time zones, or irregular sleep-wake cycles has long-term consequences for human health. Among the multiplicity of physiological systems hypothesized to have a role in the onset of pathologies in case of circadian disruption, there are redox-sensitive defensive pathways and inflammatory machinery. Due to its location and barrier physiological role, the skin is a prototypical tissue to study the influence of environmental insults induced OxInflammation disturbance and circadian system alteration. To better investigate the link among outdoor stressors, OxInflammation, and circadian system, we tested the differential responses of keratinocytes clock synchronized or desynchronized, in an in vitro inflammatory model exposed to O3. Being both NRF2 and NF-κB two key redox-sensitive transcription factors involved in cellular redox homeostasis and inflammation, we analyzed their activation and expression in challenged keratinocytes by O3. Our results suggest that a synchronized circadian clock not only facilitates the protective role of NRF2 in terms of a faster and more efficient defensive response against environmental insults but also moderates the cellular damage resulting from a condition of chronic inflammation. Our results bring new insights on the role of circadian clock in regulating the redox-inflammatory crosstalk influenced by O3 and possibly can be extrapolated to other pollutants able to affect the oxinflammatory cellular processes

    The reptilian clock system: circadian clock, extraretinal photoreception and clock-dependent celestial compass orientation mechanisms in reptiles.

    No full text
    Reptiles because of their phylogenetic position and ecology are one of the most interesting model to understand the circadian organization, its evolution and its adaptation to the different environments. The present review summarizes the current knowledge about the circadian organization of this taxon. In the detail, Paragraph 3 analyzes studies concerning the existence of peripheral and central circadian oscillators in reptiles, with complementary data gathered using physiological, behavioral and molecular approaches, particularly the role of SCN and the reactions of both central and peripheral oscillators to drastic changes in ambient temperatures. Paragraph 4: as it is peculiar to other non-mammalian vertebrates, also lizards behavioral and hormonal rhythms (particularly melatonin) can be entrained by extra-retinal and deep brain photoreceptors, whose position in the brain seems to vary somewhat in different lizard species. In paragraph 5, the seasonal changes in circadian organization are analyzed in fine detail in a model species, the ruin lizard Podarcis sicula, in which most research on seasonality has be done. Paragraph 6 reports some data on the role of ambient light irradiance in the circadian organization. Paragraph 7 deals with problems of orientation in space, with particular interest in celestial compass mechanisms which need a functional circadian clock to work properly. In this context recent results are reported on the functioning of a sun compass and a sky polarization compass, and the central role played by the parietal eye in those mechanisms of orientation. Paragraph 8 reports conclusion and perspectives
    corecore