2,018 research outputs found
Spin Readout and Initialization in a Semiconductor Quantum Dot
Electron spin qubits in semiconductors are attractive from the viewpoint of
long coherence times. However, single spin measurement is challenging. Several
promising schemes incorporate ancillary tunnel couplings that may provide
unwanted channels for decoherence. Here, we propose a novel spin-charge
transduction scheme, converting spin information to orbital information within
a single quantum dot by microwave excitation. The same quantum dot can be used
for rapid initialization, gating, and readout. We present detailed modeling of
such a device in silicon to confirm its feasibility.Comment: Published versio
Identifying single electron charge sensor events using wavelet edge detection
The operation of solid-state qubits often relies on single-shot readout using
a nanoelectronic charge sensor, and the detection of events in a noisy sensor
signal is crucial for high fidelity readout of such qubits. The most common
detection scheme, comparing the signal to a threshold value, is accurate at low
noise levels but is not robust to low-frequency noise and signal drift. We
describe an alternative method for identifying charge sensor events using
wavelet edge detection. The technique is convenient to use and we show that,
with realistic signals and a single tunable parameter, wavelet detection can
outperform thresholding and is significantly more tolerant to 1/f and
low-frequency noise.Comment: 11 pages, 4 figure
VLA Survey of Dense Gas in Extended Green Objects: Prevalence of 25 GHz Methanol Masers
We present resolution Very Large Array (VLA) observations of four
CHOH - 25~GHz transitions (=3, 5, 8, 10) along with 1.3~cm
continuum toward 20 regions of active massive star formation containing
Extended Green Objects (EGOs), 14 of which we have previously studied with the
VLA in the Class~I 44~GHz and Class~II 6.7~GHz maser lines (Cyganowski et al.
2009). Sixteen regions are detected in at least one 25~GHz line (=5), with
13 of 16 exhibiting maser emission. In total, we report 34 new sites of
CHOH maser emission and ten new sites of thermal CHOH emission,
significantly increasing the number of 25~GHz Class I CHOH masers observed
at high angular resolution. We identify probable or likely maser counterparts
at 44~GHz for all 15 of the 25~GHz masers for which we have complementary data,
providing further evidence that these masers trace similar physical conditions
despite uncorrelated flux densities. The sites of thermal and maser emission of
CHOH are both predominantly associated with the 4.5 m emission from
the EGO, and the presence of thermal CHOH emission is accompanied by 1.3~cm
continuum emission in 9 out of 10 cases. Of the 19 regions that exhibit 1.3~cm
continuum emission, it is associated with the EGO in 16 cases (out of a total
of 20 sites), 13 of which are new detections at 1.3~cm. Twelve of the 1.3~cm
continuum sources are associated with 6.7~GHz maser emission and likely trace
deeply-embedded massive protostars
Analysis of the Early-Time Optical Spectra of SN 2011fe in M101
The nearby Type Ia supernova SN 2011fe in M101 (cz=241 km s^-1) provides a unique opportunity to study the early evolution of a normal Type Ia supernova, its compositional structure, and its elusive progenitor system. We present 18 high signal-to-noise spectra of SN 2011fe during its first month beginning 1.2 days post-explosion and with an average cadence of 1.8 days. This gives a clear picture of how various line-forming species are distributed within the outer layers of the ejecta, including that of unburned material (C+O). We follow the evolution of C II absorption features until they diminish near maximum light, showing overlapping regions of burned and unburned material between ejection velocities of 10,000 and 16,000 km s^-1. This supports the notion that incomplete burning, in addition to progenitor scenarios, is a relevant source of spectroscopic diversity among SNe Ia. The observed evolution of the highly Doppler-shifted O I 7774 absorption features detected within five days post-explosion indicate the presence of O I with expansion velocities from 11,500 to 21,000 km s^-1. The fact that some O I is present above C II suggests that SN 2011fe may have had an appreciable amount of unburned oxygen within the outer layers of the ejecta
- …