14 research outputs found

    Cosmic Acceleration, Dark Energy and Fundamental Physics

    Full text link
    A web of interlocking observations has established that the expansion of the Universe is speeding up and not slowing, revealing the presence of some form of repulsive gravity. Within the context of general relativity the cause of cosmic acceleration is a highly elastic (p\sim -rho), very smooth form of energy called ``dark energy'' accounting for about 75% of the Universe. The ``simplest'' explanation for dark energy is the zero-point energy density associated with the quantum vacuum; however, all estimates for its value are many orders-of-magnitude too large. Other ideas for dark energy include a very light scalar field or a tangled network of topological defects. An alternate explanation invokes gravitational physics beyond general relativity. Observations and experiments underway and more precise cosmological measurements and laboratory experiments planned for the next decade will test whether or not dark energy is the quantum energy of the vacuum or something more exotic, and whether or not general relativity can self consistently explain cosmic acceleration. Dark energy is the most conspicuous example of physics beyond the standard model and perhaps the most profound mystery in all of science.Comment: 10 pages, 8 figures, invited review for Journal of the Physical Society of Japan, in pres

    Decay of the free-theory vacuum of scalar field theory in de Sitter spacetime in the interaction picture

    Full text link
    A free-theory vacuum state of an interacting field theory, e.g. quantum gravity, is unstable at tree level in general due to spontaneous emission of Fock-space particles in any spacetime with no global timelike Killing vectors, such as de Sitter spacetime, in the interaction picture. As an example, the rate of spontaneous emission of Fock-space particles is calculated in phi^4 theory in de Sitter spacetime. It is possible that this apparent spontaneous emission does not correspond to any physical processes because the states are not evolved by the true Hamiltonian in the interaction picture. Nevertheless, the constant spontaneous emission of Fock-space particles in the interaction picture clearly demonstrates that the in- and out-vacuum states are orthogonal to each other as emphasized by Polyakov and that the in-out perturbation theory, which presupposes some overlap between these two vacuum states, is inadequate. Other possible implications of apparent vacuum instability of this kind in the interaction picture are also discussed.Comment: title changed, 7 page

    New Constraints from High Redshift Supernovae and Lensing Statistics upon Scalar Field Cosmologies

    Full text link
    We explore the implications of gravitationally lensed QSOs and high-redshift SNe Ia observations for spatially flat cosmological models in which a classically evolving scalar field currently dominates the energy density of the Universe. We consider two representative scalar field potentials that give rise to effective decaying Λ\Lambda (``quintessence'') models: pseudo-Nambu-Goldstone bosons (V(ϕ)=M4(1+cos(ϕ/f))V(\phi)=M^4(1+\cos (\phi /f)) ) and an inverse power-law potential (V(ϕ)=M4+αϕαV(\phi)=M^{4+\alpha}\phi ^{-\alpha}). We show that a large region of parameter space is consistent with current data if Ωm0>0.15\Omega_{m0} > 0.15. On the other hand, a higher lower bound for the matter density parameter suggested by large-scale galaxy flows, Ωm0>0.3\Omega_{m0} > 0.3, considerably reduces the allowed parameter space, forcing the scalar field behavior to approach that of a cosmological constant.Comment: 6 pages, 2 figures, submitted to PR

    Probing Dark Energy with Supernovae: Exploiting Complementarity with the Cosmic Microwave Background

    Get PDF
    A primary goal for cosmology and particle physics over the coming decade will be to unravel the nature of the dark energy that drives the accelerated expansion of the Universe. In particular, determination of the equation-of-state of dark energy, w equivalent p/rho, and its time variation, dw/dz, will be critical for developing theoretical understanding of the new physics behind this phenomenon. Type Ia supernovae (SNe) and cosmic microwave background (CMB) anisotropy are each sensitive to the dark energy equation-of-state. SNe alone can determine w(z) with some precision, while CMB anisotropy alone cannot because of a strong degeneracy between the matter density Omega_M and w. However, we show that the Planck CMB mission can significantly improve the power of a deep SNe survey to probe w and especially dw/dz. Because CMB constraints are nearly orthogonal to SNe constraints in the Omega_M-w plane, for constraining w(z) Planck is more useful than precise determination of Omega_M. We discuss how the CMB/SNe complementarity impacts strategies for the redshift distribution of a supernova survey to determine w(z) and conclude that a well-designed sample should include a substantial number of supernovae out to redshifts z ~ 2.Comment: More discussion of CMB systematics and many new references added. Matches the PRD versio

    Probing the dark energy: methods and strategies

    Get PDF
    The presence of dark energy in the Universe is inferred directly from the accelerated expansion of the Universe, and indirectly, from measurements of cosmic microwave background (CMB) anisotropy. Dark energy contributes about 2/3 of the critical density, is very smoothly distributed, and has large negative pressure. Its nature is very much unknown. Most of its discernible consequences follow from its effect on evolution of the expansion rate of the Universe, which in turn affects the growth of density perturbations and the age of the Universe, and can be probed by the classical kinematic cosmological tests. Absent a compelling theoretical model (or even a class of models), we describe the dark energy by an effective equation-of-state w=p_X/\rho_X which is allowed to vary with time. We describe and compare different approaches for determining w(t), including magnitude-redshift (Hubble) diagram, number counts of galaxies and clusters, and CMB anisotropy, focusing particular attention on the use of a sample of several thousand type Ia supernova with redshifts z\lesssim 1.7, as might be gathered by the proposed SNAP satellite. Among other things, we derive optimal strategies for constraining cosmological parameters using type Ia supernovae. While in the near term CMB anisotropy will provide the first measurements of w, supernovae and number counts appear to have the most potential to probe dark energy.Comment: 20 pages and 23 figures, revtex, submitted to Phys. Rev.

    Radiative neutrino mass generation and dark energy

    Full text link
    We study the models with radiative neutrino mass generation and explore the relation between the neutrino masses and dark energy. In these models, the pseudo-Nambu-Goldston bosons (pNGBs) arise at two-loop level via the Majorana neutrino masses. In particular, we demonstrate that the potential energy of the pNGB can be the dark energy potential and the observed value of the equation of state (EoS) parameter of the universe, i.e.i.e., w1w\simeq -1, can be realized.Comment: 10 pages, 1 figure, a minor correction in Eq. (17

    The Cosmological Constant

    Get PDF
    This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity (http://www.livingreviews.org/), December 199

    Agegraphic dark energy as a quintessence

    Get PDF
    Recently, a dark energy model characterized by the age of the universe, dubbed ``agegraphic dark energy'', was proposed by Cai. In this paper, a connection between the quintessence scalar-field and the agegraphic dark energy is established, and accordingly, the potential of the agegraphic quintessence field is constructed.Comment: 9 pages, 3 figures; accepted by Eur. Phys. J.

    Holographic dilatonic model of dark energy

    Get PDF
    We present a dilatonic description of the holographic dark energy by connecting the holographic dark energy density with the dilaton scalar field energy density in a flat Friedmann-Robertson-Walker universe. We show that this model can describe the observed accelerated expansion of our universe with the choice c1c\geq1 and reconstruct the kinetic term as well as the dynamics of the dilaton scalar field.Comment: 7 pages, 3 figures, changed content, added references, accepted for publication at Eur.Phys.J.

    The growth factor of matter perturbations in an f(R) gravity

    Full text link
    The growth of matter perturbations in the f(R)f(R) model proposed by Starobinsky is studied in this paper. Three different parametric forms of the growth index are considered respectively and constraints on the model are obtained at both the 1σ1\sigma and 2σ2\sigma confidence levels, by using the current observational data for the growth factor. It is found, for all the three parametric forms of the growth index examined, that the Starobinsky model is consistent with the observations only at the 2σ2\sigma confidence level.Comment: 15 pages, 5 figure
    corecore