142 research outputs found

    BEAMS: separating the wheat from the chaff in supernova analysis

    Full text link
    We introduce Bayesian Estimation Applied to Multiple Species (BEAMS), an algorithm designed to deal with parameter estimation when using contaminated data. We present the algorithm and demonstrate how it works with the help of a Gaussian simulation. We then apply it to supernova data from the Sloan Digital Sky Survey (SDSS), showing how the resulting confidence contours of the cosmological parameters shrink significantly.Comment: 23 pages, 9 figures. Chapter 4 in "Astrostatistical Challenges for the New Astronomy" (Joseph M. Hilbe, ed., Springer, New York, forthcoming in 2012), the inaugural volume for the Springer Series in Astrostatistic

    The galaxy-mass correlation function measured from weak lensing in the Sloan Digital Sky Survey

    Get PDF
    We present galaxy-galaxy lensing measurements over scales 0.025 to 10 h(-1) Mpc in the Sloan Digital Sky Survey (SDSS). Using a flux-limited sample of 127,001 lens galaxies with spectroscopic redshifts and mean luminosity [L] similar to L-* and 9,020,388 source galaxies with photometric redshifts, we invert the lensing signal to obtain the galaxy-mass correlation function xi(gm). We find xi(gm) is consistent with a power law, xi(gm) (r = r(0))(-gamma), with best-fit parameters gamma = 1.79 +/- 0.06 and r(0) (5.4 +/- 0.7) (0.27/Omega(m))(1/gamma) h(-1) Mpc. At fixed separation, the ratio xi(gg)/xi(gm) = b/r, where b is the bias and r is the correlation coefficient. Comparing with the galaxy autocorrelation function for a similarly selected sample of SDSS galaxies, we find that b/r is approximately scale-independent over scales 0.2 - 6.7 h(-1) Mpc, with mean [b/r] = (1.3 +/- 0.2) (Omega(m)/0.27). We also find no scale dependence in b/r for a volume-limited sample of luminous galaxies (-23.0 < M-r < -21.5). The mean b/r for this sample is [b/r](Vlim) = (2.0 +/- 0.7) (Omega(m)/0.27). We split the lens galaxy sample into subsets based on luminosity, color, spectral type, and velocity dispersion and see clear trends of the lensing signal with each of these parameters. The amplitude and logarithmic slope of xi(gm) increase with galaxy luminosity. For high luminosities (L similar to 5 L-*), xi(gm) deviates significantly from a power law. These trends with luminosity also appear in the subsample of red galaxies, which are more strongly clustered than blue galaxies

    Efficient use of simultaneous multi-band observations for variable star analysis

    Full text link
    The luminosity changes of most types of variable stars are correlated in the different wavelengths, and these correlations may be exploited for several purposes: for variability detection, for distinction of microvariability from noise, for period search or for classification. Principal component analysis is a simple and well-developed statistical tool to analyze correlated data. We will discuss its use on variable objects of Stripe 82 of the Sloan Digital Sky Survey, with the aim of identifying new RR Lyrae and SX Phoenicis-type candidates. The application is not straightforward because of different noise levels in the different bands, the presence of outliers that can be confused with real extreme observations, under- or overestimated errors and the dependence of errors on the magnitudes. These particularities require robust methods to be applied together with the principal component analysis. The results show that PCA is a valuable aid in variability analysis with multi-band data.Comment: 8 pages, 5 figures, Workshop on Astrostatistics and Data Mining in Astronomical Databases, May 29-June 4 2011, La Palm

    Solitonic supersymmetry restoration

    Full text link
    Q-balls are a possible feature of any model with a conserved, global U(1) symmetry and no massless, charged scalars. It is shown that for a broad class of models of metastable supersymmetry breaking they are extremely influential on the vacuum lifetime and make seemingly viable vacua catastrophically short lived. A net charge asymmetry is not required as there is often a significant range of parameter space where statistical fluctuations alone are sufficient. This effect is examined for two supersymmetry breaking scenarios. It is found that models of minimal gauge mediation (which necessarily have a messenger number U(1)) undergo a rapid, supersymmetry restoring phase transition unless the messenger mass is greater than 10^8 GeV. Similarly the ISS model, in the context of direct mediation, quickly decays unless the perturbative superpotential coupling is greater than the Standard Model gauge couplings.Comment: 17 pages, 3 figures, minor comments added, accepted for publication in JHE

    Yeast Based Small Molecule Screen for Inhibitors of SARS-CoV

    Get PDF
    Severe acute respiratory coronavirus (SARS-CoV) emerged in 2002, resulting in roughly 8000 cases worldwide and 10% mortality. The animal reservoirs for SARS-CoV precursors still exist and the likelihood of future outbreaks in the human population is high. The SARS-CoV papain-like protease (PLP) is an attractive target for pharmaceutical development because it is essential for virus replication and is conserved among human coronaviruses. A yeast-based assay was established for PLP activity that relies on the ability of PLP to induce a pronounced slow-growth phenotype when expressed in S. cerevisiae. Induction of the slow-growth phenotype was shown to take place over a 60-hour time course, providing the basis for conducting a screen for small molecules that restore growth by inhibiting the function of PLP. Five chemical suppressors of the slow-growth phenotype were identified from the 2000 member NIH Diversity Set library. One of these, NSC158362, potently inhibited SARS-CoV replication in cell culture without toxic effects on cells, and it specifically inhibited SARS-CoV replication but not influenza virus replication. The effect of NSC158362 on PLP protease, deubiquitinase and anti-interferon activities was investigated but the compound did not alter these activities. Another suppressor, NSC158011, demonstrated the ability to inhibit PLP protease activity in a cell-based assay. The identification of these inhibitors demonstrated a strong functional connection between the PLP-based yeast assay, the inhibitory compounds, and SARS-CoV biology. Furthermore the data with NSC158362 suggest a novel mechanism for inhibition of SARS-CoV replication that may involve an unknown activity of PLP, or alternatively a direct effect on a cellular target that modifies or bypasses PLP function in yeast and mammalian cells

    QCD axion and quintessential axion

    Full text link
    The axion solution of the strong CP problem is reviewed together with the other strong CP solutions. We also point out the quintessential axion(quintaxion) whose potential can be extremely flat due to the tiny ratio of the hidden sector quark mass and the intermediate hidden sector scale. The quintaxion candidates are supposed to be the string theory axions, the model independent or the model dependent axions.Comment: 15 pages. Talk presented at Castle Ringberg, June 9-14, 200

    Modelling air and water two-phase annular flow in a small horizontal pipe

    Get PDF
    Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian–Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type

    Condensate cosmology in O'Raifeartaigh models

    Full text link
    Flat directions charged under an R-symmetry are a generic feature of O'Raifeartaigh models. Non-topological solitons associated with this symmetry, R-balls, are likely to form through the fragmentation of a condensate, itself created by soft terms induced during inflation. In gravity mediated SUSY breaking R-balls decay to gravitinos, reheating the universe. For gauge mediation R-balls can provide a good dark matter candidate. Alternatively they can decay, either reheating or cooling the universe. Conserved R-symmetry permits decay to gravitinos or gauginos, whereas spontaneously broken R-symmetry results in decay to visible sector gauge bosons.Comment: 29 pages, 5 figures. Comments and references added, accepted for publication in JHE

    The Cosmological Constant

    Get PDF
    This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity (http://www.livingreviews.org/), December 199

    Massive stars as thermonuclear reactors and their explosions following core collapse

    Full text link
    Nuclear reactions transform atomic nuclei inside stars. This is the process of stellar nucleosynthesis. The basic concepts of determining nuclear reaction rates inside stars are reviewed. How stars manage to burn their fuel so slowly most of the time are also considered. Stellar thermonuclear reactions involving protons in hydrostatic burning are discussed first. Then I discuss triple alpha reactions in the helium burning stage. Carbon and oxygen survive in red giant stars because of the nuclear structure of oxygen and neon. Further nuclear burning of carbon, neon, oxygen and silicon in quiescent conditions are discussed next. In the subsequent core-collapse phase, neutronization due to electron capture from the top of the Fermi sea in a degenerate core takes place. The expected signal of neutrinos from a nearby supernova is calculated. The supernova often explodes inside a dense circumstellar medium, which is established due to the progenitor star losing its outermost envelope in a stellar wind or mass transfer in a binary system. The nature of the circumstellar medium and the ejecta of the supernova and their dynamics are revealed by observations in the optical, IR, radio, and X-ray bands, and I discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry" Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
    corecore