7,927 research outputs found

    Comment on "Material Evidence of a 38 MeV Boson"

    Full text link
    In the recent preprint 1202.1739 it was claimed that preliminary data presented by COMPASS at recent conferences confirm the existence of a resonant state of mass 38 MeV decaying to two photons. This claim was made based on structures observed in two-photon mass distributions which however were shown only to demonstrate the purity and mass resolution of the {\pi}0 and {\eta} signals. The additional structures are understood as remnants of secondary interactions inside the COMPASS spectrometer. Therefore, the COMPASS data do not confirm the existence of this state.Comment: 2 pages, 7 figure

    Killing spinors in supergravity with 4-fluxes

    Full text link
    We study the spinorial Killing equation of supergravity involving a torsion 3-form \T as well as a flux 4-form \F. In dimension seven, we construct explicit families of compact solutions out of 3-Sasakian geometries, nearly parallel \G_2-geometries and on the homogeneous Aloff-Wallach space. The constraint \F \cdot \Psi = 0 defines a non empty subfamily of solutions. We investigate the constraint \T \cdot \Psi = 0, too, and show that it singles out a very special choice of numerical parameters in the Killing equation, which can also be justified geometrically

    Application of a novel method for subsequent evaluation of sinusoids and postsinusoidal venules after ischemia-reperfusion injury of rat liver

    Get PDF
    Although several intravital fluorescence microscopic studies demonstrated that microcirculatory derangement is induced during liver ischemia-reperfusion, these data were obtained from randomly selected microvascular areas and microvessels, Repeated observation of the identical microvessels has not been performed yet. Using a specially designed cover glass, it is now possible to relocate desired sites of observation repeatedly over the whole reperfusion time, The aim of this study was to determine the impact of reperfusion time on hepatic microvascular perfusion state. Twenty minutes of ischemia induced a significant decrease in sinusoidal perfusion rate (29.1 +/- 10.2%) as compared with baseline values (98.0 +/- 0.3%). At 30, 60, and 120 min of reperfusion, the percentage of perfused sinusoids recovered to 62.8 +/- 6.6, 67.5 +/- 5.7, and 77.2 +/- 5.4%. The number of stagnant leukocytes in the same sinusoids was 6.2 +/- 1.9/lobule at baseline and increased to 22.3 +/- 3.6/lobule at 120 min of reperfusion. The number of leukocytes adhering within postsinusoidal venules was 53.5 +/- 12.5/mm(2) before ischemia and increased to 414.2 +/- 62.5/mm(2) at 120 min of reperfusion. We have demonstrated that during 120 min of reperfusion, there was a steady increase in both sinusoidal and venular leukocyte adhesion along with an attenuation of the initially severely depressed sinusoidal perfusion. a no-reflow phenomenon at an early phase of reperfusion and subsequent reflow were proven

    Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. I. The conformal field equations

    Get PDF
    This is the first in a series of articles on the numerical solution of Friedrich's conformal field equations for Einstein's theory of gravity. We will discuss in this paper why one should be interested in applying the conformal method to physical problems and why there is good hope that this might even be a good idea from the numerical point of view. We describe in detail the derivation of the conformal field equations in the spinor formalism which we use for the implementation of the equations, and present all the equations as a reference for future work. Finally, we discuss the implications of the assumptions of a continuous symmetry.Comment: 19 pages, LaTeX2

    Deformed Base Antisymmetrized Molecular Dynamics and its Application to ^{20}Ne

    Full text link
    A new theoretical framework named as deformed base antisymmetrized molecular dynamics that uses the localized triaxially deformed Gaussian as the single particle wave packet is presented. The model space enables us to describe sufficiently well the deformed mean-field structure as well as the cluster structure and their mixed structure within the same framework. The improvement over the original version of the antisymmetrized molecular dynamics which uses the spherical Gaussian is verified by the application to 20Ne^{20}{\rm Ne} nucleus. The almost pure α+16Og.s\alpha + ^{16}{\rm O_{g.s}} cluster structure of the KπK^\pi=0−0^- band, the distortion of the cluster structure in the KπK^\pi=01+0^+_1 band and the dominance of the deformed mean-field structure of the KπK^\pi=2−2^- band are confirmed and their observed properties are reproduced. Especially, the intra-band E2 transition probabilities in KπK^\pi=01+0^+_1 and 2−2^- bands are reproduced without any effective charge. Since it has been long known that the pure α+16Og.s.\alpha + ^{16}{\rm O}_{g.s.} cluster model underestimates the intra-band E2E2 transitions in the KπK^\pi=01+0^+_1 band by about 30%, we consider that this success is due to the sufficient description of the deformed mean-field structure in addition to the cluster structure by the present framework. From the successful description of 20Ne^{20}{\rm Ne}, we expect that the present framework presents us with a powerful approach for the study of the coexistence and interplay of the mean-field structure and the cluster structure

    On a choice of the Bondi radial coordinate and news function for the axisymmetric two-body problem

    Full text link
    In the Bondi formulation of the axisymmetric vacuum Einstein equations, we argue that the ``surface area'' coordinate condition determining the ``radial'' coordinate can be considered as part of the initial data and should be chosen in a way that gives information about the physical problem whose solution is sought. For the two-body problem, we choose this coordinate by imposing a condition that allows it to be interpreted, near infinity, as the (inverse of the) Newtonian potential. In this way, two quantities that specify the problem -- the separation of the two particles and their mass ratio -- enter the equations from the very beginning. The asymptotic solution (near infinity) is obtained and a natural identification of the Bondi "news function" in terms of the source parameters is suggested, leading to an expression for the radiated energy that differs from the standard quadrupole formula but agrees with recent non-linear calculations. When the free function of time describing the separation of the two particles is chosen so as to make the new expression agree with the classical result, closed-form analytic expressions are obtained, the resulting metric approaching the Schwarzschild solution with time. As all physical quantities are defined with respect to the flat metric at infinity, the physical interpretation of this solution depends strongly on how these definitions are extended to the near-zone and, in particular, how the "time" function in the near-zone is related to Bondi's null coordinate.Comment: 13 pages, LaTeX, submitted to Classical and Quantum Gravity; v2 corrected a few typos and added some comments; v3 expanded discussion and added references -- Rejected by CQG; v4: 8 pages revtex4 2 column, extensively revised, submitted to Phys Rev D; v5: 21 pages revtex4 preprint; further discussion of physical interpretation; v6: 21 pages revtex4 preprint -- final version to appear in Phys. Rev. D (2006
    • …
    corecore