
Ultra-Fast Load Balancing
on Scale-Free Networks

Karl Bringmann1, Tobias Friedrich2,3, Martin Hoefer4,
Ralf Rothenberger2,3(B), and Thomas Sauerwald5

1 Institute of Theoretical Computer Science, ETH Zurich, Switzerland
2 Friedrich Schiller University Jena, Jena, Germany

3 Hasso Plattner Institute, Potsdam, Germany
ralf.rothenberger@hpi.de

4 Max Planck Institute for Informatics, Saarbrücken, Germany
5 University of Cambridge, Cambridge, UK

Abstract. The performance of large distributed systems crucially
depends on efficiently balancing their load. This has motivated a large
amount of theoretical research how an imbalanced load vector can be
smoothed with local algorithms. For technical reasons, the vast majority
of previous work focuses on regular (or almost regular) graphs including
symmetric topologies such as grids and hypercubes, and ignores the fact
that large networks are often highly heterogenous.

We model large scale-free networks by Chung-Lu random graphs and
analyze a simple local algorithm for iterative load balancing. On n-node
graphs our distributed algorithm balances the load within O((log log n)2)
steps. It does not need to know the exponent β ∈ (2, 3) of the power-law
degree distribution or the weights wi of the graph model. To the best of
our knowledge, this is the first result which shows that load-balancing
can be done in double-logarithmic time on realistic graph classes.

1 Introduction

Load Balancing. Complex computational problems are typically solved on
large parallel networks. An important prerequisite for their efficient usage is
to balance the work load efficiently. Load balancing is also known to have appli-
cations to scheduling [17], routing [6], numerical computation such as solving
partial differential equations [16,19], and finite element computations [13]. In
the standard abstract formulation of load balancing, processors are represented
by nodes of a graph, while links are represented by edges. The objective is to
balance the load by allowing nodes to exchange loads with their neighbors via
the incident edges. Particularly popular are decentralized, round-based itera-
tive algorithms where a processor knows only its current load and that of the
neighboring processors. We focus on diffusive load balancing strategies, where
each processor decides how many jobs should be sent and balances its load with
its neighbors in each round. As the degrees of the topologies of many networks
follow heavy tailed statistics, our main interest lies on scale-free networks.
c© Springer-Verlag Berlin Heidelberg 2015
M.M. Halldórsson et al. (Eds.): ICALP 2015, Part II, LNCS 9135, pp. 516–527, 2015.
DOI: 10.1007/978-3-662-47666-6 41

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/226940085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ultra-Fast Load Balancing on Scale-Free Networks 517

Diffusion. On networks with n nodes, our balancing model works as follows: At
the beginning, each node i has some work load x

(0)
i . The goal is to obtain (a good

approximation of) the balanced work load x :=
∑n

i=1 x
(0)
i /n on all nodes. On

heterogenous graphs with largely varying node degrees it is natural to consider
a multiplicative quality measure: We want to find an algorithm which achieves
maxi x

(t)
i = O(x) at the earliest time t possible. Load-balancing is typically

considered fast if this can be achieved in time logarithmic in the number of
nodes. We aim at double-logarithmic time, which we call ultra-fast (following the
common use of the superlative “ultra” for double-logarithmic bounds [4,10,18]).

The diffusion model was first studied by Cybenko [6] and, independently,
Boillat [1]. The standard implementation is the first order scheme (FOS), where
the load vector is multiplied with a diffusion matrix P in each step. For regular
graphs with degree d, a common choice is Pij = 1/(d + 1) if {i, j} ∈ E. Already
Cybenko [6] in 1989 shows for regular graphs a tight connection between the
convergence rate of the diffusion algorithm and the absolute value of the second
largest eigenvalue λmax of the diffusion matrix P. While FOS can be defined for
non-regular graphs, its convergence is significantly affected by the loops which
are induced by the degree discrepancies. Regardless of how the damping factor
is chosen, FOS requires Ω(log n) rounds on a broad class of non-regular graphs.
For a proof and discussion of this statement we refer to the full version of this
paper.
Scale-free Networks. Many real-world graphs have a power law degree dis-
tribution, meaning that the number of vertices with degree k is proportional
to k−β , where β is a constant intrinsic to the network. Such networks are syn-
onymously called scale-free networks and have been widely studied. As a model
for large scale-free networks we use the Chung-Lu random graph model with a
power-law degree distribution with exponent β ∈ (2, 3). (See Section 2 for a for-
mal definition.) This range of β’s is typically studied as many scale-free networks
(e.g. co-actors, protein interactions, internet, peer-to-peer [15]) have a power law
exponent with 2 < β < 3. It is known that the diameter of this graph model is
Θ(log n) while the average distance between two vertices is Θ(log log n) [3].
Results. Scale-free networks are omnipresent, but surprisingly few rigorous
insights are known about their ability to efficiently balance load. Most results and
developed techniques for theoretically studying load balancing only apply to reg-
ular (or almost-regular) graphs. In fact, we cannot hope for ultra-fast balancing
on almost-regular graphs: Even for expander graphs of maximum degree d, there
is a general lower bound of Ω(log n/ log d) iterations for any distributed load bal-
ancing algorithms (for a proof of this statement we refer to the full version of
this paper). Our main result (cf. Theorem 2.1) shows that within O((log log n)2)
steps, our simple local balancing algorithm (cf. Algorithm 1) can balance the
load on a scale-free graph with high probability. The algorithm assumes that
the initial load is only distributed on nodes with degree Ω(polylog n) (cf. The-
orem 2.2), which appears to be a natural assumption in typical load balancing
applications. As the diameter of the graph is Θ(log n), ultra-fast balancing is
impossible if the initial load is allowed on arbitrary vertices. As standard FOS

518 K. Bringmann et al.

requires Ω(log n) rounds, our algorithm uses a different, novel approach to over-
come these restrictions.

Algorithm. The protocol proceeds in waves, and each wave (roughly) proceeds
as follows. First, the remaining load is balanced within a core of high-degree
nodes. These nodes are known to compose a structure very similar to a dense
Erdős-Rényi random graph and thereby allow very fast balancing. Afterwards,
the load is disseminated into the network from high- to low-degree nodes. Each
node absorbs some load and forwards the remaining to lower-degree neighbors.
If there are no such neighbors, the excess load is routed back to nodes it was
received from. In this way, the load moves like a wave over the graph in decreasing
order of degree and then swaps back into the core. We will show that each wave
needs O(log log n) rounds. The algorithm keeps initiating waves until all load is
absorbed, and we will show that only O(log log n) waves are necessary.

Techniques. There are a number of technical challenges in our analysis, mostly
coming from the random graph model, and we have to develop new techniques
to cope with them. For example, in scale-free random graphs there exist large
sparse areas with many nodes of small degree that result in a high diameter.
A challenge is to avoid that waves get lost by pushing too much load deep
into these periphery areas. This is done by a partition of nodes into layers with
significantly different degrees and waves that proceed only to neighboring layers.
To derive the layer structure, we classify nodes based on their realized degrees.
However, this degree might be different from the expected degree corresponding
to the weights wi of the network model, which is unknown to the algorithm.
This implies that nodes might not play their intended role in the graph and the
analysis (cf. Definition 4.2). This can lead to poor spread and the emersion of
a few, large single loads during every wave. Here we show that several types
of “wrong-degree” events causing this problem are sufficiently rare, or, more
precisely, they tend to happen frequently only in parts of the graph that turn
out not to be critical for the result. At the core, our analysis adjusts and applies
fundamental probabilistic tools to derive concentration bounds, such as a variant
of the method of bounded variances (cf. Theorem 4.1).

2 Model, Algorithms, and Formal Result

Chung-Lu Random Graph Model. We consider random graphs G = (V,E)
as defined by Chung and Lu [3]. Every vertex i ∈ V = {1, . . . , n} has a weight
wi with wi := β−2

β−1dn1/(β−1)i−1/(β−1) for i = 1, 2 . . . , n. The probability for
placing an edge {i, j} ∈ E is then set to min{wi wj/W, 1} with W :=

∑n
i=1 wi.

This creates a random graph where the expected degrees follow a power-law
distribution with exponent β ∈ (2, 3), the maximum expected node degree is
β−2
β−1dn1/(β−1) and d influences the average expected node degree Chung and Lu
[3]. The graph has a core of densely connected nodes which we define as

C :=
{

i ∈ V : degi � n1/2 −
√

n1/2 · (c + 1) ln n

}

.

Ultra-Fast Load Balancing on Scale-Free Networks 519

Algorithm 1. Balance load in waves from core to all other nodes
repeat

for phase t ← 1 to log log n do
for 32

3−β rounds do // 1. diffusion on the core

Nodes v with deg(v) � ω0 perform diffusion with P = D−1A
for L rounds do // 2. downward propagation

Every node absorbs at most m/nt2 load.
All remaining load is forwarded in equal shares to neighbors on
the next lower layer.

for L rounds do // 3. upward propagation

All nodes send their load back to the the next higher layer over
the edges they received it from. The distribution of load
amongst these edges can be arbitrary.

until terminated ;

Distributing the Load in Waves. Our main algorithm is presented in Algo-
rithm 1. It assumes that an initial total load of m resides exclusively on the
core C of the network. The first rounds are spend on simple diffusion on the
core with diffusion matrix P = D−1A, where A is the adjacency matrix and
D is the degree matrix. Afterwards, the algorithm pushes the load to all other
nodes in waves from the large to the small degree nodes and the other way
around. To define the direction of the waves, the algorithm partitions the nodes
into layers, where on layer k we have all nodes v of degree degv ∈ (ωk, ωk−1],
where ω0 = n1/2 −

√
n1/2 · (c + 1) ln n and ωk+1 = ω1−ε

k for a constant

0 < ε < min
{

(3−β)
(β−1) ,

β−2
3 , 1

2

(
1 −
√

3
β+1

)}
.

For every layer k we have ωk > 2
1

ε(β−1) . The last layer � is the first, for

which ω� � 2
1

ε(β−1) holds. In this case, we define the interval simply to include
all nodes with degree less than ω�−1. Note that in total we obtain at most
L := 1

log(1/(1−ε))

(
log log n + log ε(β−1)

2

)
layers. To choose an appropriate ε, we

have to know lower and upper bounds on β. These bounds are either known or
can be chosen as constants arbitrarily close to 2 and 3. The algorithm therefore
does not need to know the precise β. Our main result is then as follows.

Theorem 2.1. Let G = (V,E) be a Chung-Lu random graph as defined above.
For any load vector x(0) ∈ R

n
�0 with support only on the core C of the graph,

there is a τ = O((log log n)2) such that for all steps t � τ of Algorithm 1, the
resulting load vector x(t) fulfills x

(t)
u = O(x) for all u ∈ V w. h. p.1

1 w. h. p. is short for “with high probability”. We use w.h.p. to describe events that
hold with probability 1 − n−c for an arbitrary large constant c.

520 K. Bringmann et al.

Reaching the Core. Algorithm 1 and Theorem 2.1 above require that the ini-
tial total load resides exclusively on the core C of the network. As the diameter
of the network is Θ(log n) [3], we cannot hope to achieve a double-logarithmic
balancing time if all the initial load starts at an arbitrary small and remote
vertex. However, we can allow initial load on all nodes with at least some poly-
logarithmic degree by adding an initial phase in which all nodes send all their
load to an arbitrary neighbor on the next-highest layer. This initial local rout-
ing phase succeeds if all nodes with at least this polylogarithmic degree have at
least one neighbor on the next-highest layer. The following theorem, the proof
of which can be found in the full version of this paper, formalizes this result,
while the rest of the paper proves Theorem 2.1.

Theorem 2.2. Let G = (V,E) be a Chung-Lu random graph as defined
above. For any load vector x(0) ∈ R

n
�0 with support only on nodes with degree

Ω((log n)max(3,2/(3−β)), the initial phase reaches after L = Θ(log log n) steps a
load vector x(L) such that x

(L)
u has support only on the core C w. h. p.

3 Analysis of Load Balancing on the Core

We start our analysis of Algorithm 1 with its first step, the diffusion on the core.
Recall the definition of the core C of the network and consider the core subgraph
G̃ = (Ṽ , Ẽ) induced by C.

Lemma 3.1. The core subgraph G̃ of G fulfills

|1 − λk(L)| � Θ

(√
(c + 1) ln(4n)
n(3−β)/4

+
(2c ln n)1/4

n1/8

)

for all eigenvalues λk(L) > λmin(L) of the normalized Laplacian L(G̃) w. h. p.

The proof of Lemma 3.1 is based on Theorem 2 from [12] and can be found
in the full version of this paper. The following lemma states that after only a
constant number of diffusion rounds in G̃, the load of node v ∈ C is more or less
equal to m · wv/W0.

Lemma 3.2. After 32
3−β rounds of diffusion with P = D−1A in the core sub-

graph G̃, each node v ∈ C has a load of at most O (wy/
∑

x∈C wx

)
w. h. p.

The proof of Lemma 3.2 uses eq. 12.11 from [14] and can be found in the
full version, too. An implication of the lemma is, that there is a constant ε0 > 0
such that each node v ∈ C has a load of at most (1 + ε0) wv

W0
m after the first

phase of Algorithm 1.

4 Analysis of Top-Down Propagation

We continue our analysis of Algorithm 1. This section studies the down-
ward/upward propagation.

Ultra-Fast Load Balancing on Scale-Free Networks 521

Many of the proofs in this section are based on the following variant of the
method of bounded variances [8], which might be useful in its own respect.

Theorem 4.1. Let X1, . . . , Xn be independent random variables taking values
in {0, 1}, and set μ := E [

∑n
i=1 Xi]. Let f := f(X1, . . . , Xn) be a function

satisfying
|f | � M,

and consider an error event B such that for every Xn ∈ B

|f(Xn) − f(X′
n)| � c

for every X′
n that differs in only one position Xi from Xn, and for some c > 0.

Then for any 0 � t � cμ we have

Pr
[∣
∣f − E [f]

∣
∣ > t + (2M)2

c Pr[B]
]

� 2M
c Pr[B] + 2 exp

(
− t2

16c2μ

)
.

The proof of this theorem closely follows the one of the method of bounded
variances as can be found in [8]. For the sake of brevity, however, all proofs are
omitted in this version of the paper and interested readers are referred to the
full version.

First note that our algorithm deals with a random graph and therefore it
might happen that some of the nodes’ neighborhood look significantly different
from what one would expect by looking at the expected values. We call these
nodes dead-ends as they can not be utilized to effectively forward load. This
definition will be made precise in Definition 4.2 below.

Only for the sake of analysis we assume that dead-ends do not push load to
neighbors on the next lowest layer, but instead keep all of it. In reality the algo-
rithm does not differentiate between nodes which are dead-ends and nodes which
are no dead-ends. We also assume in this section that nodes do not consume any
load during the top-down distribution.

The main goal of this section is twofold. We first show that no node which
is not a dead-end, gets too much load. Then we show that the total load on all
dead-ends from the core down to a layer with nodes of a certain constant degree
is at most a constant fraction of the total load. The converse means that at least
a constant fraction of load reaches the nodes of the last layer we are considering.

We define Vk = {v | wv ∈ (ωk, ωk−1]} as the set of nodes on layer k and
nk = |Vk|. Let Wk =

∑
v∈Vi

wv be the total weight of nodes in layer k. Let

γ := 1
2

(
dβ−2

β−1

)β−1

. From the given weight sequence and the requirements ωk >

2
1

ε(β−1) and ωk < n1/(β−1), we can easily derive the following bounds. For all 0 �
k < � it holds that γ

2 ·nω1−β
k � nk � 4γ ·nω1−β

k .This implies Wk � γ
2 ·nω2−β

k .Let
d = W

n the expected average degree.
For a node v ∈ Vk we consider two partial degrees. Let Dh

v be the number of
edges to nodes in the higher layer k − 1, and D�

v is the number of edges to nodes

522 K. Bringmann et al.

in the lower layer k + 1. Note that Dh
v and D�

v are random variables, composed
of sums of independent Bernoulli trials:

Dh
v =

∑

u∈Vk−1

Ber
(wv · wu

W

)
and D�

v =
∑

u∈Vk+1

Ber
(wv · wu

W

)
.

In our proofs we will apply several well-known Chernoff bounds which use the
fact that partial degrees are sums of independent Bernoulli trials.

We now define four properties which will be used throughout the analysis.

Definition 4.2. A node v ∈ V is a dead-end if one of the following holds:

〈D1〉 In-/Out-degree: A node v ∈ Vk has this property if either |Dh
v −

E
[
Dh

v

] | � E
[
Dh

v

]2/3 or |D�
v − E

[
D�

v

] | � E
[
D�

v

]2/3.
〈D2〉 Wrong layer: A node v ∈ Vk has this property if it has a degree that

deviates by at least w
2/3
v from its expected degree.

〈D3〉 Border: A node v ∈ Vk has this property if it does not fulfill property 〈D2〉
and if it is of weight at least ωk−1 − ω

2/3
k−1 or at most ωk + ω

2/3
k−1 and if it

is assigned to the wrong layer.
〈D4〉 Induced Out-degree: A node v ∈ Vk has this property if it fulfills none

of the properties 〈D1〉 – 〈D3〉 and if it has at least (ωk Wk+1/W)2/3 many
lower-layer neighbors with properties 〈D2〉 or 〈D3〉.

The next lemma shows that for a non-dead-end node v ∈ Vk the received load xv

in phase k is almost proportional to the “layer-average load” m·wv/Wk. For dead-
ends, the received load can be higher, but the probability to receive significantly
higher load is small.

Lemma 4.3. For vk ∈ Vk and the received load xv in phase k the following
holds. If v is not a dead-end,

xv � (1 + εk) · m · wv

Wk
,

where for every layer k the error term εk is given by

(1 + εk) = (1 + εk−1) · (1 + O(ω−1+β/3
k)) · (1 + O(ω−(3−β)/6

k)) ,

so εk � εk+1 and εk = O(1).

Now we want to show that on each layer with sufficiently large constant
weight at most a small fraction of the total load remains on dead-ends. To do so,
we show that for each property 〈D1〉 – 〈D4〉 the nodes with these properties only
contribute a small enough fraction to the total dead-end load of each layer. We
begin by bounding the contribution of 〈D1〉-nodes to the total dead-end load.

Lemma 4.4. If ε � (3 − β)/(β − 1) and ωk >

(
2d
γ

(
1

2e−1

)3
)2/(3−β)

, the prob-

ability that a node v ∈ Vk is a 〈D1〉-node is at most 2 exp(−c · ω
(3−β)/6
k), for

c = 1
4

(
γ

2d

)1/3

.

Ultra-Fast Load Balancing on Scale-Free Networks 523

An implication of the former lemma is that there are no 〈D1〉-nodes on layers
with weight at least polylog(n). Now that we have an understanding of which
layers actually contain 〈D1〉-nodes, we can start to derive high probability upper
bounds on the total load that is left on these nodes throughout the top-down
phase.

Lemma 4.5. If v ∈ Vk is a 〈D1〉-node, then

Pr
[

xv � α · m · wv

Wk

]

< exp
(
−Ω(ω(3−β)/2

k · min{α − 1, (α − 1)2})
)

.

Now we use the tail bound from Lemma 4.5 and overestimate the load dis-
tribution of 〈D1〉-nodes with an exponential distribution. In particular, for each
node v ∈ Vk we introduce the variable Xv that measures the “〈D1〉-load” of
this node, i.e. the load that each 〈D1〉-node keeps. We can now show that for
each node v ∈ Vk the following random variable stochastically dominates the
〈D1〉-load Xv.

Definition 4.6. For a node v ∈ Vk let

X̂v =

{
0 with prob. 1 − p̂v

�v

(
1 + Exp(λv) + E

[
Dh

v

]−2/3
)

with prob. p̂v ,

where p̂v = 2 exp
(

−E[Dh
v]1/3

4

)

is an upper bound for the probability that v is a

〈D1〉-node, λv = 1
4E
[
Dh

v

]
and �v = 2(1 + εk)m wv

Wk
.

Note that our 〈D1〉-load overestimates the contribution of v to the total load
left on 〈D1〉-nodes during the top-down phase. In particular, if v is not a 〈D1〉-
node, then no 〈D1〉-load is left on v and consequently the contribution is 0.
Otherwise, we use the tail bound from Lemma 4.5 as follows. We overestimate
the load by assuming that at least twice the layer-average load is present on v. For
the additional load, we can apply the tail bound under the condition α � 2, which
implies that this excess load is upper bounded by an exponentially distributed
random variable with a parameter λv = 1

4E
[
Dh

v

]
.

We first obtain a high probability bound on the total load left on 〈D1〉-nodes
in each layer k during the top-down phase.

Lemma 4.7. For every constant c > 0 and any k the total load left on 〈D1〉-
nodes in layer k is at most

4(1 + εk)m
ωk−1

Wk
c ln n + 40(1 + εk)m

ωk−1

Wk
nk exp

(

−1
4

(

ωk
Wk−1

W

)1/3
)

with probability at least 1 − n−c.

Now we take a closer look at nodes with property 〈D2〉. We can employ
a Chernoff Bound to show that nodes with polylogarithmically large weights

524 K. Bringmann et al.

do not deviate by w
2/3
v from their expected degree with high probability. This

means that none of these nodes fulfills property 〈D2〉 with high probability. In
the following analysis we can therefore concentrate on nodes with weight at most
polylog(n). This observation is crucial for the proof of Lemma 4.8.

Lemma 4.8. For any k all nodes v ∈ Vk with property 〈D2〉 contribute at most

O
((

1 + ω
−2/3
k

)3
ω

4−β+ε(β−1)
1−ε

k · exp
(
−ω

1/3
k /4

)
m

)

+ O
(

polylog(n)√
n

m

)

to the total dead-end load of all layers with probability at most 1 − 3
nC , for a

constant C > 1 + (β − 2)
(
1 + 1

1−ε

)
.

After successfully bounding the contribution of nodes with properties 〈D1〉
and 〈D2〉 to dead-end load, we will now turn to the border nodes with property
〈D3〉. We already know that these nodes cannot deviate too much from their
expected degrees, because they do not fulfill property 〈D2〉 by definition. There-
fore they can only be on one of two layers. We still have to differ between nodes
in the upper half of a border and those in the lower half. The following lemma
bounds the contribution of nodes in the upper half of a border.

Lemma 4.9. For any k all nodes v ∈ Vk with property 〈D3〉 and
ωk � wv � ωk + ω

2/3
k−1 contribute at most

Θ

(

ω
−ε(β−2)
k +

ωβ−2
k ωβ−2

k+1 · c ln n

n

)

m

to the total dead-end load of layer k + 1 w. h. p.

The following lemma about the contribution of nodes in the lower half of a
border uses the smoothness of the weight distribution.

Lemma 4.10. For any k all nodes v ∈ Vk+1 with property 〈D3〉 and
ωk − ω

2/3
k � wv � ωk contribute at most

(1 + εk)

⎛

⎜
⎝

6
(
dβ−2

β−1

)β−1

γ
2

ω
−1/3
k +

2 · ωβ−1
k

γ
2n

+
d · ωβ−2

k ωβ−2
k+1 · c ln n

(
γ
2

)2
n

⎞

⎟
⎠m

to the total dead-end load of layer k w. h. p.

At last we have to show that the dead-end load of nodes with property 〈D4〉
is properly bounded. We already know, that each of these nodes obeys the upper
bound from Lemma 4.3. Therefore it is sufficient to bound the number of these
nodes. To bound the number of these nodes in Vk, we simply have to bound the
total number of edges lost between nodes from Vk and nodes with properties
〈D2〉 or 〈D3〉 from Vk+1. This idea helps us to proof the following lemma.

Ultra-Fast Load Balancing on Scale-Free Networks 525

Lemma 4.11. Let ε < min
{

β−2
3 , 1

2

(
1 −
√

3
β+1

)}
. Then the following state-

ments hold:

(1) For all k > 0 the total load of nodes v ∈ Vk with property 〈D4〉 is at most

O
(

ω
2−β

3(1−ε)

k + ω
(2β2−11β+14)(β−2)

27(1−ε)

k + n
3+1−ε+2(β−2)(1−ε)2

6 −1

+ exp
(
−ω

1−ε
3

k /4
)

ω
1

1−ε+(β−2)

k +
polylog(n)√

n

)

m w. h. p.

(2) For k = 0 there are no 〈D4〉-nodes w. h. p.

Finally, we bound the total load left on dead-ends during the top-down phase.

Lemma 4.12. For every constant c, there exists a constant c′ such that if we run
the top-down phase on layers with ωi � c′, then with probability at least 1−1/n−c

we obtain a total load of at most m/2 on all dead-ends on these layers.

The last lemma implies that with high probability, for a suitably chosen key
layer at most half of the load is left on dead-ends during the top-down phase
on this and the above layers. In particular, our upper bound on the load of
non-dead-end nodes in Lemma 4.3 implies that on this layer, every such node
gets at most a load of (1 + εk) · m · wv/Wk. On the other hand, a load of m/2
passes through this layer w.h.p. In the worst case all non-dead-ends get the
maximum load of (1 + εk) · m · wv/Wk. This results in at least n γ

4(1+εk)
ωk

− β−1
(1−ε)

nodes which absorb m/n load each, causing a decrease of unassigned load by a
constant fraction of at least γ

4(1+εk)
ωk

− β−1
(1−ε) . Here, ωk � c′ where c′ is as chosen

in Lemma 4.12.

5 Analysis of Iterative Absorption

Algorithm 1 sends all unassigned load back to the top, balances it within the top
layer, and restarts the top-down distribution step. Observe that all the arguments
made for the analysis of the downward propagation can be applied for any value
of m. The absorption of load during these iterations is adjusted according to the
following scheme. We let each of the nodes absorb at most a load of m/(n · t2)
in round t. This scheme is executed for t = log log n rounds and then repeated
in chunks of log log n rounds until all load is assigned. We will show that with
high probability after a constant number of repetitions, all load is assigned. In
addition, as

∑∞
t=1 1/t2 = Π2/6, each node receives a load of (1 + O(1)) · m/n.

In particular, our aim is to show that using this scheme we need only
O(log log n) top-down distribution steps to reduce the total unassigned load in
the system to m′ = m/ logc n, for any constant c. This is shown in the lemma
below. Given this result, we run the protocol long enough such that c becomes
a sufficiently large constant. We want to show that, if this is the case, each node

526 K. Bringmann et al.

on a layer with polylogarithmic degree gets a load of at most m/n, resulting in
all remaining load being absorbed. As each non-dead-end on this layer gets a
share of at most wv

Wk

W m′ = polylog(n)
n m′ = m/n they fulfill the requirement. The

same bound holds for 〈D4〉-nodes by definition. As 〈D1〉- and 〈D2〉-nodes do not
appear on layers of at least polylogarithmic degree, we can ignore them as well.
All we need to care about now are 〈D3〉-nodes. We can derive upper bounds on
their load similar to the ones for non-dead-ends using results on the expected
number of edges between these nodes and both their possible next-highest layers.
This is a simple corollary from the proof of Theorem 2.2 which we defer to the
full version of the paper. It now remains to show the following lemma, the proof
of which can be found in the full version of this paper.

Lemma 5.1. Using the repeated absorption scheme of Algorithm 1, for any
constant c, only O(log log n) rounds suffice to reduce the unassigned load in the
network to m/ logc n.

6 Discussion

To the best of our knowledge, we have presented the first double-logarithmic
load balancing protocol for a realistic network model. Our algorithm reaches a
balanced state in time less than the diameter of the graph, which is a common
lower bound for other protocols (e.g. [9]). Note that our Theorem 2.1 can be
interpreted outside of the intended domain: It reproves (without using the fact)
that the giant component is of size Θ(n) (known from [3]) and that rumor
spreading to most vertices can be done in O(log log n) (known from [10]).

Our algorithm works fully distributed, and nodes decide how many tokens
should be sent or received based only on their current load (and those of its
neighbors). We expect our wave algorithm to perform very robust against node
and edge failures as it does not require global information on distances [9] or the
computation of a balancing flow [7].

Our Theorem 2.2 allows initial load on nodes with degree Ω(polylog n).
Future work includes a further relaxation of this assumption, for instance, by
employing results about greedy local-search based algorithms to find high degree
nodes [2,5]. Another interesting direction is to translate our load balancing
protocol into an algorithm which samples a random node using the analogy
between load and probability distributions. Such sampling algorithms are crucial
for crawling large-scale networks such as online social networks like Facebook,
where direct sampling is not supported [11].

References

1. Boillat, J.E.: Load balancing and poisson equation in a graph. Concurrency: Pract.
Exper., 2, 289–313 (1990)

2. Borgs, C., Brautbar, M., Chayes, J., Khanna, S., Lucier, B.: The power of local
information in social networks. In: Goldberg, P.W. (ed.) WINE 2012. LNCS,
vol. 7695, pp. 406–419. Springer, Heidelberg (2012)

Ultra-Fast Load Balancing on Scale-Free Networks 527

3. Chung, F., Lu, L.: The average distances in random graphs with given expected
degrees. Proceedings of the National Academy of Sciences 99, 15879–15882 (2002)

4. Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90,
058701 (2003)

5. Cooper, C., Radzik, T., Siantos, Y.: A fast algorithm to find all high degree vertices
in graphs with a power law degree sequence. In: Bonato, A., Janssen, J. (eds.) WAW
2012. LNCS, vol. 7323, pp. 165–178. Springer, Heidelberg (2012)

6. Cybenko, G.: Load balancing for distributed memory multiprocessors. J. Parallel
and Distributed Comput. 7, 279–301 (1989)

7. Diekmann, R., Frommer, A., Monien, B.: Efficient schemes for nearest neighbor
load balancing. Parallel Computing 25, 789–812 (1999)

8. Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press (2009)

9. Elsässer, R., Sauerwald, T.: Discrete load balancing is (almost) as easy as continu-
ous load balancing. In: 29th Symp. Principles of Distributed Computing (PODC),
pp. 346–354 (2010)

10. Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor spreading in
social networks. In: 23rd Symp. Discrete Algorithms (SODA), pp. 1642–1660 (2012)

11. Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Walking in Facebook:
A case study of unbiased sampling of OSNs. In: 29th IEEE Conf. Computer
Communications (INFOCOM), pp. 2498–2506 (2010)

12. Graham, F.C., Radcliffe, M.: On the spectra of general random graphs. Electr. J.
Comb. 18 (2011)

13. Huebner, K.H., Dewhirst, D.L., Smith, D.E., Byrom, T.G.: The Finite Element
Methods for Engineers. Wiley (2001)

14. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. AMS
(2008)

15. Newman, M.E.J.: The structure and function of complex networks. SIAM Review
45, 167–256 (2003)

16. Subramanian, R., Scherson, I.D.: An analysis of diffusive load-balancing. In: 6th
Symp. Parallelism in Algorithms and Architectures (SPAA), pp. 220–225 (1994)

17. Surana, S., Godfrey, B., Lakshminarayanan, K., Karp, R., Stoica, I.: Load
balancing in dynamic structured peer-to-peer systems. Performance Evaluation
63, 217–240 (2006)

18. van der Hofstad, R.: Random graphs and complex networks (2011). www.win.tue.
nl/rhofstad/NotesRGCN.pdf

19. Zhanga, D., Jianga, C., Li, S.: A fast adaptive load balancing method for par-
allel particle-based simulations. Simulation Modelling Practice and Theory 17,
1032–1042 (2009)

www.win.tue.nl/ rhofstad/NotesRGCN.pdf
www.win.tue.nl/ rhofstad/NotesRGCN.pdf

	Ultra-Fast Load Balancing on Scale-Free Networks
	1 Introduction
	2 Model, Algorithms, and Formal Result
	3 Analysis of Load Balancing on the Core
	4 Analysis of Top-Down Propagation
	5 Analysis of Iterative Absorption
	6 Discussion
	References

