5,622 research outputs found

    Initial boundary value problems for Einstein's field equations and geometric uniqueness

    Get PDF
    While there exist now formulations of initial boundary value problems for Einstein's field equations which are well posed and preserve constraints and gauge conditions, the question of geometric uniqueness remains unresolved. For two different approaches we discuss how this difficulty arises under general assumptions. So far it is not known whether it can be overcome without imposing conditions on the geometry of the boundary. We point out a natural and important class of initial boundary value problems which may offer possibilities to arrive at a fully covariant formulation.Comment: 19 page

    The Lundgren-Monin-Novikov Hierarchy: Kinetic Equations for Turbulence

    Get PDF
    We present an overview of recent works on the statistical description of turbulent flows in terms of probability density functions (PDFs) in the framework of the Lundgren-Monin-Novikov (LMN) hierarchy. Within this framework, evolution equations for the PDFs are derived from the basic equations of fluid motion. The closure problem arises either in terms of a coupling to multi-point PDFs or in terms of conditional averages entering the evolution equations as unknown functions. We mainly focus on the latter case and use data from direct numerical simulations (DNS) to specify the unclosed terms. Apart from giving an introduction into the basic analytical techniques, applications to two-dimensional vorticity statistics, to the single-point velocity and vorticity statistics of three-dimensional turbulence, to the temperature statistics of Rayleigh-B\'enard convection and to Burgers turbulence are discussed.Comment: Accepted for publication in C. R. Acad. Sc

    3D simulations of Einstein's equations: symmetric hyperbolicity, live gauges and dynamic control of the constraints

    Full text link
    We present three-dimensional simulations of Einstein equations implementing a symmetric hyperbolic system of equations with dynamical lapse. The numerical implementation makes use of techniques that guarantee linear numerical stability for the associated initial-boundary value problem. The code is first tested with a gauge wave solution, where rather larger amplitudes and for significantly longer times are obtained with respect to other state of the art implementations. Additionally, by minimizing a suitably defined energy for the constraints in terms of free constraint-functions in the formulation one can dynamically single out preferred values of these functions for the problem at hand. We apply the technique to fully three-dimensional simulations of a stationary black hole spacetime with excision of the singularity, considerably extending the lifetime of the simulations.Comment: 21 pages. To appear in PR

    Exponential Decay for Small Non-Linear Perturbations of Expanding Flat Homogeneous Cosmologies

    Get PDF
    It is shown that during expanding phases of flat homogeneous cosmologies all small enough non-linear perturbations decay exponentially. This result holds for a large class of perfect fluid equations of state, but notably not for very ``stiff'' fluids as the pure radiation case

    First-order symmetrizable hyperbolic formulations of Einstein's equations including lapse and shift as dynamical fields

    Get PDF
    First-order hyperbolic systems are promising as a basis for numerical integration of Einstein's equations. In previous work, the lapse and shift have typically not been considered part of the hyperbolic system and have been prescribed independently. This can be expensive computationally, especially if the prescription involves solving elliptic equations. Therefore, including the lapse and shift in the hyperbolic system could be advantageous for numerical work. In this paper, two first-order symmetrizable hyperbolic systems are presented that include the lapse and shift as dynamical fields and have only physical characteristic speeds.Comment: 11 page

    Conformal loop ensembles and the stress-energy tensor

    Full text link
    We give a construction of the stress-energy tensor of conformal field theory (CFT) as a local "object" in conformal loop ensembles CLE_\kappa, for all values of \kappa in the dilute regime 8/3 < \kappa <= 4 (corresponding to the central charges 0 < c <= 1, and including all CFT minimal models). We provide a quick introduction to CLE, a mathematical theory for random loops in simply connected domains with properties of conformal invariance, developed by Sheffield and Werner (2006). We consider its extension to more general regions of definition, and make various hypotheses that are needed for our construction and expected to hold for CLE in the dilute regime. Using this, we identify the stress-energy tensor in the context of CLE. This is done by deriving its associated conformal Ward identities for single insertions in CLE probability functions, along with the appropriate boundary conditions on simply connected domains; its properties under conformal maps, involving the Schwarzian derivative; and its one-point average in terms of the "relative partition function." Part of the construction is in the same spirit as, but widely generalizes, that found in the context of SLE_{8/3} by the author, Riva and Cardy (2006), which only dealt with the case of zero central charge in simply connected hyperbolic regions. We do not use the explicit construction of the CLE probability measure, but only its defining and expected general properties.Comment: 49 pages, 3 figures. This is a concatenated, reduced and simplified version of arXiv:0903.0372 and (especially) arXiv:0908.151

    Numerical stability of the AA evolution system compared to the ADM and BSSN systems

    Full text link
    We explore the numerical stability properties of an evolution system suggested by Alekseenko and Arnold. We examine its behavior on a set of standardized testbeds, and we evolve a single black hole with different gauges. Based on a comparison with two other evolution systems with well-known properties, we discuss some of the strengths and limitations of such simple tests in predicting numerical stability in general.Comment: 16 pages, 12 figure

    Numerical stability of a new conformal-traceless 3+1 formulation of the Einstein equation

    Full text link
    There is strong evidence indicating that the particular form used to recast the Einstein equation as a 3+1 set of evolution equations has a fundamental impact on the stability properties of numerical evolutions involving black holes and/or neutron stars. Presently, the longest lived evolutions have been obtained using a parametrized hyperbolic system developed by Kidder, Scheel and Teukolsky or a conformal-traceless system introduced by Baumgarte, Shapiro, Shibata and Nakamura. We present a new conformal-traceless system. While this new system has some elements in common with the Baumgarte-Shapiro-Shibata-Nakamura system, it differs in both the type of conformal transformations and how the non-linear terms involving the extrinsic curvature are handled. We show results from 3D numerical evolutions of a single, non-rotating black hole in which we demonstrate that this new system yields a significant improvement in the life-time of the simulations.Comment: 7 pages, 2 figure

    Generic metrics and the mass endomorphism on spin three-manifolds

    Full text link
    Let (M,g)(M,g) be a closed Riemannian spin manifold. The constant term in the expansion of the Green function for the Dirac operator at a fixed point p∈Mp\in M is called the mass endomorphism in pp associated to the metric gg due to an analogy to the mass in the Yamabe problem. We show that the mass endomorphism of a generic metric on a three-dimensional spin manifold is nonzero. This implies a strict inequality which can be used to avoid bubbling-off phenomena in conformal spin geometry.Comment: 8 page

    On the universality of small scale turbulence

    Get PDF
    The proposed universality of small scale turbulence is investigated for a set of measurements in a cryogenic free jet with a variation of the Reynolds number (Re) from 8500 to 10^6. The traditional analysis of the statistics of velocity increments by means of structure functions or probability density functions is replaced by a new method which is based on the theory of stochastic Markovian processes. It gives access to a more complete characterization by means of joint probabilities of finding velocity increments at several scales. Based on this more precise method our results call in question the concept of universality.Comment: 4 pages, 4 figure
    • …
    corecore