2,384 research outputs found
Stable non-uniform black strings below the critical dimension
The higher-dimensional vacuum Einstein equation admits translationally
non-uniform black string solutions. It has been argued that infinitesimally
non-uniform black strings should be unstable in 13 or fewer dimensions and
otherwise stable. We construct numerically non-uniform black string solutions
in 11, 12, 13, 14 and 15 dimensions. Their stability is investigated using
local Penrose inequalities. Weakly non-uniform solutions behave as expected.
However, in 12 and 13 dimensions, strongly non-uniform solutions appear to be
stable and can have greater horizon area than a uniform string of the same
mass. In 14 and 15 dimensions all non-uniform black strings appear to be
stable.Comment: 26 pages, 11 figures. V2: reference added, matches published versio
Identification of Specific Circular RNA Expression Patterns and MicroRNA Interaction Networks in Mesial Temporal Lobe Epilepsy
Circular RNAs (circRNAs) regulate mRNA translation by binding to microRNAs (miRNAs), and their expression is altered in diverse disorders, including cancer, cardiovascular disease, and Parkinson’s disease. Here, we compare circRNA expression patterns in the temporal cortex and hippocampus of patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) and healthy controls. Nine circRNAs showed significant differential expression, including circRNA-HOMER1, which is expressed in synapses. Further, we identified miRNA binding sites within the sequences of differentially expressed (DE) circRNAs; expression levels of mRNAs correlated with changes in complementary miRNAs. Gene set enrichment analysis of mRNA targets revealed functions in heterocyclic compound binding, regulation of transcription, and signal transduction, which maintain the structure and function of hippocampal neurons. The circRNA–miRNA–mRNA interaction networks illuminate the molecular changes in MTLE, which may be pathogenic or an effect of the disease or treatments and suggests that DE circRNAs and associated miRNAs may be novel therapeutic targets
Once more on the Witten index of 3d supersymmetric YM-CS theory
The problem of counting the vacuum states in the supersymmetric 3d
Yang-Mills-Chern-Simons theory is reconsidered. We resolve the controversy
between its original calculation by Witten at large volumes and the calculation
based on the evaluation of the effective Lagrangian in the small volume limit.
We show that the latter calculation suffers from uncertainties associated with
the singularities in the moduli space of classical vacua where the
Born-Oppenheimer approximation breaks down. We also show that these
singularities can be accurately treated in the Hamiltonian Born-Oppenheimer
method, where one has to match carefully the effective wave functions on the
Abelian valley and the wave functions of reduced non-Abelian QM theory near the
singularities. This gives the same result as original Witten's calculation.Comment: 27 page
How to Pay for Public Education
For years now, public education, and especially public higher education has been under attack. Funding has been drastically reduced, fees increased, and the seemingly irresistible political force of ever-tightening austerity budgets threatens to cut it even more. But I am not going to take the standard line that government financial support for public higher education should be increased. I view that battle as already lost. What I am going to propose is that we stop arguing about the allocation or reallocation of ever more scarce public resources and think of another way to fund public higher education. It's time for a new approach, one that satisfies the left's claim that higher education should be affordable for all, yet one that does not involve increasing expenditure of public funds or commit the government to entitlement programs that it cannot now or at least cannot long afford. What we need is a new proposal that is acceptable to both sides if we are to bring public education into the twenty-first century. And this is what this paper is devoted to providin
Arterial oxygen content is precisely maintained by graded erythrocytotic responses in settings of high/normal serum iron levels, and predicts exercise capacity: an observational study of hypoxaemic patients with pulmonary arteriovenous malformations.
Oxygen, haemoglobin and cardiac output are integrated components of oxygen transport: each gram of haemoglobin transports 1.34 mls of oxygen in the blood. Low arterial partial pressure of oxygen (PaO2), and haemoglobin saturation (SaO2), are the indices used in clinical assessments, and usually result from low inspired oxygen concentrations, or alveolar/airways disease. Our objective was to examine low blood oxygen/haemoglobin relationships in chronically compensated states without concurrent hypoxic pulmonary vasoreactivity.165 consecutive unselected patients with pulmonary arteriovenous malformations were studied, in 98 cases, pre/post embolisation treatment. 159 (96%) had hereditary haemorrhagic telangiectasia. Arterial oxygen content was calculated by SaO2 x haemoglobin x 1.34/100.There was wide variation in SaO2 on air (78.5-99, median 95)% but due to secondary erythrocytosis and resultant polycythaemia, SaO2 explained only 0.1% of the variance in arterial oxygen content per unit blood volume. Secondary erythrocytosis was achievable with low iron stores, but only if serum iron was high-normal: Low serum iron levels were associated with reduced haemoglobin per erythrocyte, and overall arterial oxygen content was lower in iron deficient patients (median 16.0 [IQR 14.9, 17.4]mls/dL compared to 18.8 [IQR 17.4, 20.1]mls/dL, p<0.0001). Exercise tolerance appeared unrelated to SaO2 but was significantly worse in patients with lower oxygen content (p<0.0001). A pre-defined athletic group had higher Hb:SaO2 and serum iron:ferritin ratios than non-athletes with normal exercise capacity. PAVM embolisation increased SaO2, but arterial oxygen content was precisely restored by a subsequent fall in haemoglobin: 86 (87.8%) patients reported no change in exercise tolerance at post-embolisation follow-up.Haemoglobin and oxygen measurements in isolation do not indicate the more physiologically relevant oxygen content per unit blood volume. This can be maintained for SaO2 ≥78.5%, and resets to the same arterial oxygen content after correction of hypoxaemia. Serum iron concentrations, not ferritin, seem to predict more successful polycythaemic responses
Elective laparoscopic splenectomy for giant hemangioma: a case report
Although unusual, hemangioma is the most common primary splenic neoplasm. Splenectomy is indicated when the tumor is large, with increased risk of hemorrhage. The laparoscopic approach is preferred for most elective splenectomies. Although technically feasible, laparoscopic splenectomy can be a challenge in the patient with splenomegaly. We present herein a case of an 18-year-old male asymptomatic patient who underwent laparoscopic splenectomy for the incidental finding of splenomegaly caused by a large splenic hemangioma. Laparoscopic splenectomy appears to be a safe and effective procedure, in appropriately experienced hands, for patients with splenomegaly, given the spleen's fragile anatomy and its relationship to other abdominal viscera
Empowerment or Engagement? Digital Health Technologies for Mental Healthcare
We argue that while digital health technologies (e.g. artificial intelligence, smartphones, and virtual reality) present significant opportunities for improving the delivery of healthcare, key concepts that are used to evaluate and understand their impact can obscure significant ethical issues related to patient engagement and experience. Specifically, we focus on the concept of empowerment and ask whether it is adequate for addressing some significant ethical concerns that relate to digital health technologies for mental healthcare. We frame these concerns using five key ethical principles for AI ethics (i.e. autonomy, beneficence, non-maleficence, justice, and explicability), which have their roots in the bioethical literature, in order to critically evaluate the role that digital health technologies will have in the future of digital healthcare
Circulating markers of arterial thrombosis and late-stage age-related macular degeneration: a case-control study.
PURPOSE: The aim of this study was to examine the relation of late-stage age-related macular degeneration (AMD) with markers of systemic atherothrombosis. METHODS: A hospital-based case-control study of AMD was undertaken in London, UK. Cases of AMD (n=81) and controls (n=77) were group matched for age and sex. Standard protocols were used for colour fundus photography and to classify AMD; physical examination included height, weight, history of or treatment for vascular-related diseases and smoking status. Blood samples were taken for measurement of fibrinogen, factor VIIc (FVIIc), factor VIIIc, prothrombin fragment F1.2 (F1.2), tissue plasminogen activator, and von Willebrand factor. Odds ratios from logistic regression analyses of each atherothrombotic marker with AMD were adjusted for age, sex, and established cardiovascular disease risk factors, including smoking, blood pressure, body mass index, and total cholesterol. RESULTS: After adjustment FVIIc and possibly F1.2 were inversely associated with the risk of AMD; per 1 standard deviation increase in these markers the odds ratio were, respectively, 0.62 (95% confidence interval 0.40, 0.95) and 0.71 (0.46, 1.09). None of the other atherothrombotic risk factors appeared to be related to AMD status. There was weak evidence that aspirin is associated with a lower risk of AMD. CONCLUSIONS: This study does not provide strong evidence of associations between AMD and systematic markers of arterial thrombosis, but the potential effects of FVIIc, and F1.2 are worthy of further investigation
A Condensation-Ordering Mechanism in Nanoparticle-Catalyzed Peptide Aggregation
Nanoparticles introduced in living cells are capable of strongly promoting
the aggregation of peptides and proteins. We use here molecular dynamics
simulations to characterise in detail the process by which nanoparticle
surfaces catalyse the self- assembly of peptides into fibrillar structures. The
simulation of a system of hundreds of peptides over the millisecond timescale
enables us to show that the mechanism of aggregation involves a first phase in
which small structurally disordered oligomers assemble onto the nanoparticle
and a second phase in which they evolve into highly ordered beta-sheets as
their size increases
- …