35,587 research outputs found
Axial instability of rotating relativistic stars
Perturbations of rotating relativistic stars can be classified by their
behavior under parity. For axial perturbations (r-modes), initial data with
negative canonical energy is found with angular dependence for all
values of and for arbitrarily slow rotation. This implies instability
(or marginal stability) of such perturbations for rotating perfect fluids. This
low -instability is strikingly different from the instability to polar
perturbations, which sets in first for large values of . The timescale for
the axial instability appears, for small angular velocity , to be
proportional to a high power of . As in the case of polar modes,
viscosity will again presumably enforce stability except for hot, rapidly
rotating neutron stars. This work complements Andersson's numerical
investigation of axial modes in slowly rotating stars.Comment: Latex, 18 pages. Equations 84 and 85 are corrected. Discussion of
timescales is corrected and update
Calculation of compressible flow in and about three-dimensional inlets with and without auxiliary inlets by a higher-order panel method
A three dimensional higher order panel method was specialized to the case of inlets with auxiliary inlets. The resulting program has a number of graphical input-output features to make it highly useful to the designer. The various aspects of the program are described instructions for its use are presented
Quasi-Chemical and Structural Analysis of Polarizable Anion Hydration
Quasi-chemical theory is utilized to analyze the roles of solute polarization
and size in determining the structure and thermodynamics of bulk anion
hydration for the Hofmeister series Cl, Br, and I. Excellent
agreement with experiment is obtained for whole salt hydration free energies
using the polarizable AMOEBA force field. The quasi-chemical approach exactly
partitions the solvation free energy into inner-shell, outer-shell packing, and
outer-shell long-ranged contributions by means of a hard-sphere condition.
Small conditioning radii, even well inside the first maximum of the
ion-water(oxygen) radial distribution function, result in Gaussian behavior for
the long-ranged contribution that dominates the ion hydration free energy. The
spatial partitioning allows for a mean-field treatment of the long-ranged
contribution, leading to a natural division into first-order electrostatic,
induction, and van der Waals terms. The induction piece exhibits the strongest
ion polarizability dependence, while the larger-magnitude first-order
electrostatic piece yields an opposing but weaker polarizability dependence. In
addition, a structural analysis is performed to examine the solvation
anisotropy around the anions. As opposed to the hydration free energies, the
solvation anisotropy depends more on ion polarizability than on ion size:
increased polarizability leads to increased anisotropy. The water dipole
moments near the ion are similar in magnitude to bulk water, while the ion
dipole moments are found to be significantly larger than those observed in
quantum mechanical studies. Possible impacts of the observed over-polarization
of the ions on simulated anion surface segregation are discussed.Comment: slight revision, in press at J. Chem. Phy
Calculation of compressible flow about three-dimensional inlets with auxiliary inlets, slats and vanes by means of a panel method
An efficient and user oriented method was constructed for calculating flow in and about complex inlet configurations. Efficiency is attained by: (1) the use of a panel method; (2) a technique of superposition for obtaining solutions at any inlet operating condition; and (3) employment of an advanced matrix iteration technique for solving large full systems of equations, including the nonlinear equations for the Kutta condition. User concerns are addressed by the provision of several novel graphical output options that yield a more complete comprehension of the flowfield than was possible previously
Ferromagnetism of He Films in the Low Field Limit
We provide evidence for a finite temperature ferromagnetic transition in
2-dimensions as in thin films of He on graphite, a model system
for the study of two-dimensional magnetism. We perform pulsed and CW NMR
experiments at fields of 0.03 - 0.48 mT on He at areal densities of 20.5 -
24.2 atoms/nm. At these densities, the second layer of He has a
strongly ferromagnetic tendency. With decreasing temperature, we find a rapid
onset of magnetization that becomes independent of the applied field at
temperatures in the vicinity of 1 mK. Both the dipolar field and the NMR
linewidth grow rapidly as well, which is consistent with a large (order unity)
polarization of the He spins.Comment: 4 figure
Nuclear Multifragmentation Critical Exponents
We show that the critical exponents of nuclear multi-fragmentation have not
been determined conclusively yet.Comment: 3 pages, LaTeX, one postscript figure appended, sub. to
Phys.Rev.Lett. as a commen
Collisionless shocks in plasmas
Collisionless shocks in plasmas, dissipation and dispersion in determining shock structur
- …