1,069 research outputs found

    Implementation and Deployment of a Distributed Network Topology Discovery Algorithm

    Full text link
    In the past few years, the network measurement community has been interested in the problem of internet topology discovery using a large number (hundreds or thousands) of measurement monitors. The standard way to obtain information about the internet topology is to use the traceroute tool from a small number of monitors. Recent papers have made the case that increasing the number of monitors will give a more accurate view of the topology. However, scaling up the number of monitors is not a trivial process. Duplication of effort close to the monitors wastes time by reexploring well-known parts of the network, and close to destinations might appear to be a distributed denial-of-service (DDoS) attack as the probes converge from a set of sources towards a given destination. In prior work, authors of this report proposed Doubletree, an algorithm for cooperative topology discovery, that reduces the load on the network, i.e., router IP interfaces and end-hosts, while discovering almost as many nodes and links as standard approaches based on traceroute. This report presents our open-source and freely downloadable implementation of Doubletree in a tool we call traceroute@home. We describe the deployment and validation of traceroute@home on the PlanetLab testbed and we report on the lessons learned from this experience. We discuss how traceroute@home can be developed further and discuss ideas for future improvements

    Evaluation of a Large-Scale Topology Discovery Algorithm

    Full text link
    peer reviewedIn the past few years, the network measurement community has been interested in the problem of internet topology discovery using a large number (hundreds or thousands) of measurement monitors. The standard way to obtain information about the internet topology is to use the traceroute tool from a small number of monitors. Recent papers have made the case that increasing the number of monitors will give a more accurate view of the topology. However, scaling up the number of monitors is not a trivial process. Duplication of effort close to the monitors wastes time by reexploring well-known parts of the network, and close to destinations might appear to be a distributed denial-of-service (DDoS) attack as the probes converge from a set of sources towards a given destination. In prior work, authors of this paper proposed Doubletree, an algorithm for cooperative topology discovery, that reduces the load on the network, i.e., router IP interfaces and end-hosts, while discovering almost as many nodes and links as standard approaches based on traceroute. This paper presents our open-source and freely downloadable implementation of Doubletree in a tool we call traceroute@home. We evaluate the performance of our implementation on the PlanetLab testbed and discuss a large-scale monitoring infrastructure that could benefit of Doubletree

    Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks

    Get PDF
    BACKGROUND. Reverse engineering cellular networks is currently one of the most challenging problems in systems biology. Dynamic Bayesian networks (DBNs) seem to be particularly suitable for inferring relationships between cellular variables from the analysis of time series measurements of mRNA or protein concentrations. As evaluating inference results on a real dataset is controversial, the use of simulated data has been proposed. However, DBN approaches that use continuous variables, thus avoiding the information loss associated with discretization, have not yet been extensively assessed, and most of the proposed approaches have dealt with linear Gaussian models. RESULTS. We propose a generalization of dynamic Gaussian networks to accommodate nonlinear dependencies between variables. As a benchmark dataset to test the new approach, we used data from a mathematical model of cell cycle control in budding yeast that realistically reproduces the complexity of a cellular system. We evaluated the ability of the networks to describe the dynamics of cellular systems and their precision in reconstructing the true underlying causal relationships between variables. We also tested the robustness of the results by analyzing the effect of noise on the data, and the impact of a different sampling time. CONCLUSION. The results confirmed that DBNs with Gaussian models can be effectively exploited for a first level analysis of data from complex cellular systems. The inferred models are parsimonious and have a satisfying goodness of fit. Furthermore, the networks not only offer a phenomenological description of the dynamics of cellular systems, but are also able to suggest hypotheses concerning the causal interactions between variables. The proposed nonlinear generalization of Gaussian models yielded models characterized by a slightly lower goodness of fit than the linear model, but a better ability to recover the true underlying connections between variables.Italian Ministry of University and Scientific Research; National Institutes of Health & National Human Genome Research Institute (HG003354-01A2); Collegio Ghislieri, Pavia Italy fellowshi

    Border Crossing to Inject Drugs in Mexico Among Injection Drug Users in San Diego, California

    Get PDF
    We examined correlates of ever injecting drugs in Mexico among residents of San Diego, California. From 2007 to 2010, injecting drug users (IDUs) in San Diego underwent an interviewer-administered survey. Logistic regression identified correlates of injection drug use in Mexico. Of 302 IDUs, 38% were Hispanic, 72% male and median age was 37; 27% ever injected in Mexico; 43% reported distributive syringe sharing there. Factors independently associated with ever injecting drugs in Mexico included being younger at first injection, injecting heroin, distributive syringe sharing at least half of the time, and transporting drugs over the last 6 months. One-quarter of IDUs reported ever injecting drugs in Mexico, among whom syringe sharing was common, suggesting possible mixing between IDUs in the Mexico-US border region. Prospective studies should monitor trends in cross-border drug use in light of recent Mexican drug policy reforms partially decriminalizing drug possession

    Classification and Analysis of Regulatory Pathways Using Graph Property, Biochemical and Physicochemical Property, and Functional Property

    Get PDF
    Given a regulatory pathway system consisting of a set of proteins, can we predict which pathway class it belongs to? Such a problem is closely related to the biological function of the pathway in cells and hence is quite fundamental and essential in systems biology and proteomics. This is also an extremely difficult and challenging problem due to its complexity. To address this problem, a novel approach was developed that can be used to predict query pathways among the following six functional categories: (i) “Metabolism”, (ii) “Genetic Information Processing”, (iii) “Environmental Information Processing”, (iv) “Cellular Processes”, (v) “Organismal Systems”, and (vi) “Human Diseases”. The prediction method was established trough the following procedures: (i) according to the general form of pseudo amino acid composition (PseAAC), each of the pathways concerned is formulated as a 5570-D (dimensional) vector; (ii) each of components in the 5570-D vector was derived by a series of feature extractions from the pathway system according to its graphic property, biochemical and physicochemical property, as well as functional property; (iii) the minimum redundancy maximum relevance (mRMR) method was adopted to operate the prediction. A cross-validation by the jackknife test on a benchmark dataset consisting of 146 regulatory pathways indicated that an overall success rate of 78.8% was achieved by our method in identifying query pathways among the above six classes, indicating the outcome is quite promising and encouraging. To the best of our knowledge, the current study represents the first effort in attempting to identity the type of a pathway system or its biological function. It is anticipated that our report may stimulate a series of follow-up investigations in this new and challenging area

    A human MAP kinase interactome.

    Get PDF
    Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps

    Identification of Colorectal Cancer Related Genes with mRMR and Shortest Path in Protein-Protein Interaction Network

    Get PDF
    One of the most important and challenging problems in biomedicine and genomics is how to identify the disease genes. In this study, we developed a computational method to identify colorectal cancer-related genes based on (i) the gene expression profiles, and (ii) the shortest path analysis of functional protein association networks. The former has been used to select differentially expressed genes as disease genes for quite a long time, while the latter has been widely used to study the mechanism of diseases. With the existing protein-protein interaction data from STRING (Search Tool for the Retrieval of Interacting Genes), a weighted functional protein association network was constructed. By means of the mRMR (Maximum Relevance Minimum Redundancy) approach, six genes were identified that can distinguish the colorectal tumors and normal adjacent colonic tissues from their gene expression profiles. Meanwhile, according to the shortest path approach, we further found an additional 35 genes, of which some have been reported to be relevant to colorectal cancer and some are very likely to be relevant to it. Interestingly, the genes we identified from both the gene expression profiles and the functional protein association network have more cancer genes than the genes identified from the gene expression profiles alone. Besides, these genes also had greater functional similarity with the reported colorectal cancer genes than the genes identified from the gene expression profiles alone. All these indicate that our method as presented in this paper is quite promising. The method may become a useful tool, or at least plays a complementary role to the existing method, for identifying colorectal cancer genes. It has not escaped our notice that the method can be applied to identify the genes of other diseases as well

    Family doctor-driven follow-up for adult childhood cancer survivors supported by a web-based survivor care plan

    Get PDF
    To facilitate family doctor-driven follow-up for adult childhood cancer survivors, we developed a survivor care plan (SCP) for adult survivors and their family doctors. The SCP was accessible for survivors and their family doctors on a secure website and as a printed booklet. It included data on diagnosis, treatment and potential risks as well as recommendations for follow-up. Childhood cancer survivors who were off-treatment >= 5 years, aged >= 18 years and not involved in a long-term follow-up program were eligible. They were advised to visit their family doctor. The endpoints were numbers of participants, adherence of family doctors to the guidelines and satisfaction ratings. The eligibility criteria were fulfilled by 108 survivors. Three family doctors and 15 survivors refused, 10 survivors were non-responders. Of the remaining 80 survivors, 73 survivors visited 72 family doctors. Sixty-nine (96%) family doctors returned data of whom 60 (83%) fully adhered to the recommended tests. The majority of survivors and family doctors were satisfied about the SCP. A (web-based) SCP for survivors and family doctors can serve as an effective communication vehicle to provide adequate shared care by the long-term follow-up clinic and family doctors

    Liquid-gas phase transition in nuclear multifragmentation

    Get PDF
    The equation of state of nuclear matter suggests that at suitable beam energies the disassembling hot system formed in heavy ion collisions will pass through a liquid-gas coexistence region. Searching for the signatures of the phase transition has been a very important focal point of experimental endeavours in heavy ion collisions, in the last fifteen years. Simultaneously theoretical models have been developed to provide information about the equation of state and reaction mechanisms consistent with the experimental observables. This article is a review of this endeavour.Comment: 63 pages, 27 figures, submitted to Adv. Nucl. Phys. Some typos corrected, minor text change
    corecore