27,545 research outputs found

    Perspectives on Pfaffians of Heterotic World-sheet Instantons

    Full text link
    To fix the bundle moduli of a heterotic compactification one has to understand the Pfaffian one-loop prefactor of the classical instanton contribution. For compactifications on elliptically fibered Calabi-Yau spaces X this can be made explicit for spectral bundles and world-sheet instantons supported on rational base curves b: one can express the Pfaffian in a closed algebraic form as a polynomial, or it may be understood as a theta-function expression. We elucidate the connection between these two points of view via the respective perception of the relevant spectral curve, related to its extrinsic geometry in the ambient space (the elliptic surface in X over b) or to its intrinsic geometry as abstract Riemann surface. We identify, within a conceptual description, general vanishing loci of the Pfaffian, and derive bounds on the vanishing order, relevant to solutions of W=dW=0.Comment: 40 pages; minor changes, discussion section 1.1 adde

    Quantum Lattice Fluctuations and Luminescence in C_60

    Full text link
    We consider luminescence in photo-excited neutral C_60 using the Su-Schrieffer-Heeger model applied to a single C_60 molecule. To calculate the luminescence we use a collective coordinate method where our collective coordinate resembles the displacement of the carbon atoms of the Hg(8) phonon mode and extrapolates between the ground state "dimerisation" and the exciton polaron. There is good agreement for the existing luminescence peak spacing and fair agreement for the relative intensity. We predict the existence of further peaks not yet resolved in experiment. PACS Numbers : 78.65.Hc, 74.70.Kn, 36.90+

    The Narrow-band Ultraviolet Imaging Experiment for Wide-field Surveys (NUVIEWS)-I: Dust scattered continuum

    Get PDF
    We report on the first results of the Narrow-band Ultraviolet Imaging Experiment for Wide-field Surveys (NUVIEWS), a sounding rocket experiment designed to map the far-ultraviolet background in four narrow bands. This is the first imaging measurement of the UV background to cover a substantial fraction of the sky. The narrow band responses (145, 155, 161, and 174 nm, 7-10 nm wide) allow us to isolate background contributions from dust-scattered continuum, H2 fluorescence, and CIV 155 nm emission. In our first flight, we mapped one quarter of the sky with 5-10 arcminute imaging resolution. In this paper, we model the dominant contribution of the background, dust-scattered continuum. Our data base consists of a map of over 10,000 sq. degrees with 468 independent measurements in 6.25 by 6.25 sq. degree bins. Stars and instrumental stellar halos are removed from the data. We present a map of the continuum background obtained in the 174 nm telescope. We use a model that follows Witt, Friedman, and Sasseen (1997: WFS) to account for the inhomogeneous radiation field and multiple scattering effects in clouds. We find that the dust in the diffuse interstellar medium displays a moderate albedo (a=0.55+/-0.1) and highly forward scattering phase function parameter (g=0.75+/-0.1) over a large fraction of the sky, similar to dust in star forming regions. We also have discovered a significant variance from the model.Comment: 16 pages, 3 ps figures, submitted to Astrophysical Journal Letter

    Detecting many-body entanglements in noninteracting ultracold atomic fermi gases

    Full text link
    We explore the possibility of detecting many-body entanglement using time-of-flight (TOF) momentum correlations in ultracold atomic fermi gases. In analogy to the vacuum correlations responsible for Bekenstein-Hawking black hole entropy, a partitioned atomic gas will exhibit particle-hole correlations responsible for entanglement entropy. The signature of these momentum correlations might be detected by a sensitive TOF type experiment.Comment: 5 pages, 5 figures, fixed axes labels on figs. 3 and 5, added reference

    Topological entropy of realistic quantum Hall wave functions

    Full text link
    The entanglement entropy of the incompressible states of a realistic quantum Hall system are studied by direct diagonalization. The subdominant term to the area law, the topological entanglement entropy, which is believed to carry information about topologic order in the ground state, was extracted for filling factors 1/3, 1/5 and 5/2. The results for 1/3 and 1/5 are consistent with the topological entanglement entropy for the Laughlin wave function. The 5/2 state exhibits a topological entanglement entropy consistent with the Moore-Read wave function.Comment: 6 pages, 6 figures; improved computations and graphics; added reference

    Dual Fronts Propagating into an Unstable State

    Full text link
    The interface between an unstable state and a stable state usually develops a single confined front travelling with constant velocity into the unstable state. Recently, the splitting of such an interface into {\em two} fronts propagating with {\em different} velocities was observed numerically in a magnetic system. The intermediate state is unstable and grows linearly in time. We first establish rigorously the existence of this phenomenon, called ``dual front,'' for a class of structurally unstable one-component models. Then we use this insight to explain dual fronts for a generic two-component reaction-diffusion system, and for the magnetic system.Comment: 19 pages, Postscript, A

    A dynamical description of neutron star crusts

    Full text link
    Neutron Stars are natural laboratories where fundamental properties of matter under extreme conditions can be explored. Modern nuclear physics input as well as many-body theories are valuable tools which may allow us to improve our understanding of the physics of those compact objects. In this work the occurrence of exotic structures in the outermost layers of neutron stars is investigated within the framework of a microscopic model. In this approach the nucleonic dynamics is described by a time-dependent mean field approach at around zero temperature. Starting from an initial crystalline lattice of nuclei at subnuclear densities the system evolves toward a manifold of self-organized structures with different shapes and similar energies. These structures are studied in terms of a phase diagram in density and the corresponding sensitivity to the isospin-dependent part of the equation of state and to the isotopic composition is investigated.Comment: 8 pages, 5 figures, conference NN201

    Asymmetric Totally-corrective Boosting for Real-time Object Detection

    Full text link
    Real-time object detection is one of the core problems in computer vision. The cascade boosting framework proposed by Viola and Jones has become the standard for this problem. In this framework, the learning goal for each node is asymmetric, which is required to achieve a high detection rate and a moderate false positive rate. We develop new boosting algorithms to address this asymmetric learning problem. We show that our methods explicitly optimize asymmetric loss objectives in a totally corrective fashion. The methods are totally corrective in the sense that the coefficients of all selected weak classifiers are updated at each iteration. In contract, conventional boosting like AdaBoost is stage-wise in that only the current weak classifier's coefficient is updated. At the heart of the totally corrective boosting is the column generation technique. Experiments on face detection show that our methods outperform the state-of-the-art asymmetric boosting methods.Comment: 14 pages, published in Asian Conf. Computer Vision 201
    corecore