27,545 research outputs found
Perspectives on Pfaffians of Heterotic World-sheet Instantons
To fix the bundle moduli of a heterotic compactification one has to
understand the Pfaffian one-loop prefactor of the classical instanton
contribution. For compactifications on elliptically fibered Calabi-Yau spaces X
this can be made explicit for spectral bundles and world-sheet instantons
supported on rational base curves b: one can express the Pfaffian in a closed
algebraic form as a polynomial, or it may be understood as a theta-function
expression. We elucidate the connection between these two points of view via
the respective perception of the relevant spectral curve, related to its
extrinsic geometry in the ambient space (the elliptic surface in X over b) or
to its intrinsic geometry as abstract Riemann surface. We identify, within a
conceptual description, general vanishing loci of the Pfaffian, and derive
bounds on the vanishing order, relevant to solutions of W=dW=0.Comment: 40 pages; minor changes, discussion section 1.1 adde
Quantum Lattice Fluctuations and Luminescence in C_60
We consider luminescence in photo-excited neutral C_60 using the
Su-Schrieffer-Heeger model applied to a single C_60 molecule. To calculate the
luminescence we use a collective coordinate method where our collective
coordinate resembles the displacement of the carbon atoms of the Hg(8) phonon
mode and extrapolates between the ground state "dimerisation" and the exciton
polaron. There is good agreement for the existing luminescence peak spacing and
fair agreement for the relative intensity. We predict the existence of further
peaks not yet resolved in experiment. PACS Numbers : 78.65.Hc, 74.70.Kn,
36.90+
The Narrow-band Ultraviolet Imaging Experiment for Wide-field Surveys (NUVIEWS)-I: Dust scattered continuum
We report on the first results of the Narrow-band Ultraviolet Imaging
Experiment for Wide-field Surveys (NUVIEWS), a sounding rocket experiment
designed to map the far-ultraviolet background in four narrow bands. This is
the first imaging measurement of the UV background to cover a substantial
fraction of the sky. The narrow band responses (145, 155, 161, and 174 nm, 7-10
nm wide) allow us to isolate background contributions from dust-scattered
continuum, H2 fluorescence, and CIV 155 nm emission. In our first flight, we
mapped one quarter of the sky with 5-10 arcminute imaging resolution. In this
paper, we model the dominant contribution of the background, dust-scattered
continuum. Our data base consists of a map of over 10,000 sq. degrees with 468
independent measurements in 6.25 by 6.25 sq. degree bins. Stars and
instrumental stellar halos are removed from the data. We present a map of the
continuum background obtained in the 174 nm telescope. We use a model that
follows Witt, Friedman, and Sasseen (1997: WFS) to account for the
inhomogeneous radiation field and multiple scattering effects in clouds. We
find that the dust in the diffuse interstellar medium displays a moderate
albedo (a=0.55+/-0.1) and highly forward scattering phase function parameter
(g=0.75+/-0.1) over a large fraction of the sky, similar to dust in star
forming regions. We also have discovered a significant variance from the model.Comment: 16 pages, 3 ps figures, submitted to Astrophysical Journal Letter
Detecting many-body entanglements in noninteracting ultracold atomic fermi gases
We explore the possibility of detecting many-body entanglement using
time-of-flight (TOF) momentum correlations in ultracold atomic fermi gases. In
analogy to the vacuum correlations responsible for Bekenstein-Hawking black
hole entropy, a partitioned atomic gas will exhibit particle-hole correlations
responsible for entanglement entropy. The signature of these momentum
correlations might be detected by a sensitive TOF type experiment.Comment: 5 pages, 5 figures, fixed axes labels on figs. 3 and 5, added
reference
Topological entropy of realistic quantum Hall wave functions
The entanglement entropy of the incompressible states of a realistic quantum
Hall system are studied by direct diagonalization. The subdominant term to the
area law, the topological entanglement entropy, which is believed to carry
information about topologic order in the ground state, was extracted for
filling factors 1/3, 1/5 and 5/2. The results for 1/3 and 1/5 are consistent
with the topological entanglement entropy for the Laughlin wave function. The
5/2 state exhibits a topological entanglement entropy consistent with the
Moore-Read wave function.Comment: 6 pages, 6 figures; improved computations and graphics; added
reference
Dual Fronts Propagating into an Unstable State
The interface between an unstable state and a stable state usually develops a
single confined front travelling with constant velocity into the unstable
state. Recently, the splitting of such an interface into {\em two} fronts
propagating with {\em different} velocities was observed numerically in a
magnetic system. The intermediate state is unstable and grows linearly in time.
We first establish rigorously the existence of this phenomenon, called ``dual
front,'' for a class of structurally unstable one-component models. Then we use
this insight to explain dual fronts for a generic two-component
reaction-diffusion system, and for the magnetic system.Comment: 19 pages, Postscript, A
A dynamical description of neutron star crusts
Neutron Stars are natural laboratories where fundamental properties of matter
under extreme conditions can be explored. Modern nuclear physics input as well
as many-body theories are valuable tools which may allow us to improve our
understanding of the physics of those compact objects.
In this work the occurrence of exotic structures in the outermost layers of
neutron stars is investigated within the framework of a microscopic model. In
this approach the nucleonic dynamics is described by a time-dependent mean
field approach at around zero temperature. Starting from an initial crystalline
lattice of nuclei at subnuclear densities the system evolves toward a manifold
of self-organized structures with different shapes and similar energies. These
structures are studied in terms of a phase diagram in density and the
corresponding sensitivity to the isospin-dependent part of the equation of
state and to the isotopic composition is investigated.Comment: 8 pages, 5 figures, conference NN201
Asymmetric Totally-corrective Boosting for Real-time Object Detection
Real-time object detection is one of the core problems in computer vision.
The cascade boosting framework proposed by Viola and Jones has become the
standard for this problem. In this framework, the learning goal for each node
is asymmetric, which is required to achieve a high detection rate and a
moderate false positive rate. We develop new boosting algorithms to address
this asymmetric learning problem. We show that our methods explicitly optimize
asymmetric loss objectives in a totally corrective fashion. The methods are
totally corrective in the sense that the coefficients of all selected weak
classifiers are updated at each iteration. In contract, conventional boosting
like AdaBoost is stage-wise in that only the current weak classifier's
coefficient is updated. At the heart of the totally corrective boosting is the
column generation technique. Experiments on face detection show that our
methods outperform the state-of-the-art asymmetric boosting methods.Comment: 14 pages, published in Asian Conf. Computer Vision 201
- …