1,715 research outputs found

    A Description of Data Handling Practices and Software Tools Developed by the Boston Children’s Hospital Echo Core Laboratory

    Get PDF
    Ultrasound ‘Echocardiogram (echo)’ images generated by commercial scanners are non-invasive, economical, and have therefore become an important clinical and research tool for cardiovascular disease. The Boston Children’s Hospital (BCH, USA) cardiology department has developed echo image handling processes and software tools to simplify and manage the flow of echo data from sites participating in multi-center research studies. With frequent needs to correlate echocardiographic findings with surgical outcomes and more recently, better understand the acute and long-term effects of the SARS-CoV-2 pandemic on the heart in a multi- institutional collaborative 1, the need for a central corelab for image review and reporting has spurred the development of new software tools that seamlessly prepare, transmit and measure echocardiographic images and generate reports formatted to merge easily with clinical databases. In this paper we provide a descriptive guide to these software tools, and offer suggested approaches to data preparations that can simplify corelab processing

    Epidemiologic study of myelodysplastic syndromes in a multiethnic, inner city cohort

    Get PDF
    Little is known about the epidemiology of MDS in minority populations. The IPSS and newly released IPSS-R are important clinical tools in prognostication of patients with MDS. Therefore, we conducted a retrospective epidemiological analysis of MDS in an ethnically diverse cohort of patients. Demographics, disease characteristics, and survival were determined in 161 patients seen at Montefiore Medical Center from 1997 to 2011. We observed that Hispanics presented at a younger age than blacks and whites (68 vs. 73.7 vs. 75.6 years); this difference was significant (p = 0.01). A trend towards greater prevalence of thrombocytopenia in Hispanics was observed, but this was not significant (p = 0.08). No other differences between the groups were observed. Overall median survival after diagnosis was the highest among Hispanics (8.6 years) followed by blacks (6.2 years) and Caucasians (3.7). Adjusted hazard ratios however did not show significant differences in risk of death between the groups. The IPSS-R showed slightly better discrimination when compared to the IPSS in this cohort (Somers Dxy 0.39 vs. 0.35, respectively) but observed survival more was more closely approximated by IPSS than by IPSS-R. Our study highlights the possibility of ethnic differences in the presentation of MDS and raises questions regarding which prognostic system is more predictive in this population

    Quantum mechanical analysis of the equilateral triangle billiard: periodic orbit theory and wave packet revivals

    Full text link
    Using the fact that the energy eigenstates of the equilateral triangle infinite well (or billiard) are available in closed form, we examine the connections between the energy eigenvalue spectrum and the classical closed paths in this geometry, using both periodic orbit theory and the short-term semi-classical behavior of wave packets. We also discuss wave packet revivals and show that there are exact revivals, for all wave packets, at times given by Trev=9μa2/4πT_{rev} = 9 \mu a^2/4\hbar \pi where aa and μ\mu are the length of one side and the mass of the point particle respectively. We find additional cases of exact revivals with shorter revival times for zero-momentum wave packets initially located at special symmetry points inside the billiard. Finally, we discuss simple variations on the equilateral (60606060^{\circ}-60^{\circ}-60^{\circ}) triangle, such as the half equilateral (30609030^{\circ}-60^{\circ}-90^{\circ}) triangle and other `foldings', which have related energy spectra and revival structures.Comment: 34 pages, 9 embedded .eps figure

    Robust Inference of Trees

    Full text link
    This paper is concerned with the reliable inference of optimal tree-approximations to the dependency structure of an unknown distribution generating data. The traditional approach to the problem measures the dependency strength between random variables by the index called mutual information. In this paper reliability is achieved by Walley's imprecise Dirichlet model, which generalizes Bayesian learning with Dirichlet priors. Adopting the imprecise Dirichlet model results in posterior interval expectation for mutual information, and in a set of plausible trees consistent with the data. Reliable inference about the actual tree is achieved by focusing on the substructure common to all the plausible trees. We develop an exact algorithm that infers the substructure in time O(m^4), m being the number of random variables. The new algorithm is applied to a set of data sampled from a known distribution. The method is shown to reliably infer edges of the actual tree even when the data are very scarce, unlike the traditional approach. Finally, we provide lower and upper credibility limits for mutual information under the imprecise Dirichlet model. These enable the previous developments to be extended to a full inferential method for trees.Comment: 26 pages, 7 figure

    Generalized Density-Functional Tight-Binding Repulsive Potentials from Unsupervised Machine Learning

    Get PDF
    We combine the approximate density-functional tight-binding (DFTB) method with unsupervised machine learning. This allows us to improve transferability and accuracy, make use of large quantum chemical data sets for the parametrization, and efficiently automatize the parametrization process of DFTB. For this purpose, generalized pair-potentials are introduced, where the chemical environment is included during the learning process, leading to more specific effective two-body potentials. We train on energies and forces of equilibrium and nonequilibrium structures of 2100 molecules, and test on ∼130 000 organic molecules containing O, N, C, H, and F atoms. Atomization energies of the reference method can be reproduced within an error of ∼2.6 kcal/mol, indicating drastic improvement over standard DFTB

    Isoperimetric Inequalities in Simplicial Complexes

    Full text link
    In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach, we obtain a connection between spectral properties of complexes and Gromov's notion of geometric overlap. Using the work of Gunder and Wagner, we give an estimate for the combinatorial expansion and geometric overlap of random Linial-Meshulam complexes

    GENERALIZED CIRCULAR ENSEMBLE OF SCATTERING MATRICES FOR A CHAOTIC CAVITY WITH NON-IDEAL LEADS

    Full text link
    We consider the problem of the statistics of the scattering matrix S of a chaotic cavity (quantum dot), which is coupled to the outside world by non-ideal leads containing N scattering channels. The Hamiltonian H of the quantum dot is assumed to be an M x N hermitian matrix with probability distribution P(H) ~ det[lambda^2 + (H - epsilon)^2]^[-(beta M + 2- beta)/2], where lambda and epsilon are arbitrary coefficients and beta = 1,2,4 depending on the presence or absence of time-reversal and spin-rotation symmetry. We show that this ``Lorentzian ensemble'' agrees with microscopic theory for an ensemble of disordered metal particles in the limit M -> infinity, and that for any M >= N it implies P(S) ~ |det(1 - \bar S^{\dagger} S)|^[-(beta M + 2 - beta)], where \bar S is the ensemble average of S. This ``Poisson kernel'' generalizes Dyson's circular ensemble to the case \bar S \neq 0 and was previously obtained from a maximum entropy approach. The present work gives a microscopic justification for the case that the chaotic motion in the quantum dot is due to impurity scattering.Comment: 15 pages, REVTeX-3.0, 2 figures, submitted to Physical Review B

    How Phase-Breaking Affects Quantum Transport Through Chaotic Cavities

    Full text link
    We investigate the effects of phase-breaking events on electronic transport through ballistic chaotic cavities. We simulate phase-breaking by a fictitious lead connecting the cavity to a phase-randomizing reservoir and introduce a statistical description for the total scattering matrix, including the additional lead. For strong phase-breaking, the average and variance of the conductance are calculated analytically. Combining these results with those in the absence of phase-breaking, we propose an interpolation formula, show that it is an excellent description of random-matrix numerical calculations, and obtain good agreement with several recent experiments.Comment: 4 pages, revtex, 3 figures: uuencoded tar-compressed postscrip
    corecore