482 research outputs found

    Magnetic ordering, electronic structure and magnetic anisotropy energy in the high-spin Mn10_{10} single molecule magnet

    Full text link
    We report the electronic structure and magnetic ordering of the single molecule magnet [Mn10_{10}O4_{4}(2,2'-biphenoxide)4_{4}Br12_{12}]4^{4-} based on first-principles all-electron density-functional calculations. We find that two of the ten core Mn atoms are coupled antiferromagnetically to the remaining eight, resulting in a ferrimagnetic ground state with total spin S=13. The calculated magnetic anisotropy barrier is found to be 9 K in good agreement with experiment. The presence of the Br anions impact the electronic structure and therefore the magnetic properties of the 10 Mn atoms. However, the electric field due to the negative charges has no significant effect on the magnetic anisotropy.Comment: 4 pages, submitted to PR

    The Iso-regularization Descent Algorithm for the LASSO

    Get PDF
    International audienceFollowing the introduction by Tibshirani of the LASSO technique for feature selection in regression, two algorithms were proposed by Osborne et al. for solving the associated problem. One is an homotopy method that gained popularity as the LASSO modification of the LARS algorithm. The other is a finite-step descent method that follows a path on the constraint polytope, and seems to have been largely ignored. One of the reason may be that it solves the constrained formulation of the LASSO, as opposed to the more practical regularized formulation. We give here an adaptation of this algorithm that solves the regularized problem, has a simpler formulation, and outperforms state-of-the-art algorithms in terms of speed

    DFT calculation of the intermolecular exchange interaction in the magnetic Mn4_4 dimer

    Full text link
    The dimeric form of the single-molecule magnet [Mn4_4O3_3Cl4_4(O2_2CEt)3_3(py)3_3]2_2 recently revealed interesting phenomena: no quantum tunneling at zero field and tunneling before magnetic field reversal. This is attributed to substantial antiferromagnetic exchange interaction between different monomers. The intermolecular exchange interaction, electronic structure and magnetic properties of this molecular magnet are calculated using density-functional theory within generalized-gradient approximation. Calculations are in good agreement with experiment.Comment: 4 page

    The spectrum of BPS branes on a noncompact Calabi-Yau

    Get PDF
    We begin the study of the spectrum of BPS branes and its variation on lines of marginal stability on O_P^2(-3), a Calabi-Yau ALE space asymptotic to C^3/Z_3. We show how to get the complete spectrum near the large volume limit and near the orbifold point, and find a striking similarity between the descriptions of holomorphic bundles and BPS branes in these two limits. We use these results to develop a general picture of the spectrum. We also suggest a generalization of some of the ideas to the quintic Calabi-Yau.Comment: harvmac, 45 pp. (v2: added references

    Solitons in Seiberg-Witten Theory and D-branes in the Derived Category

    Get PDF
    We analyze the "geometric engineering" limit of a type II string on a suitable Calabi-Yau threefold to obtain an N=2 pure SU(2) gauge theory. The derived category picture together with Pi-stability of B-branes beautifully reproduces the known spectrum of BPS solitons in this case in a very explicit way. Much of the analysis is particularly easy since it can be reduced to questions about the derived category of CP1.Comment: 20 pages, LaTex2

    Long-term surveillance of SUDEP in drug-resistant epilepsy patients treated with VNS therapy.

    Get PDF
    Limited data are available regarding the evolution over time of the rate of sudden unexpected death in epilepsy patients (SUDEP) in drug-resistant epilepsy. The objective is to analyze a database of 40 443 patients with epilepsy implanted with vagus nerve stimulation (VNS) therapy in the United States (from 1988 to 2012) and assess whether SUDEP rates decrease during the postimplantation follow-up period. Patient vital status was ascertained using the Centers for Disease Control and Prevention's National Death Index (NDI). An expert panel adjudicated classification of cause of deaths as SUDEP based on NDI data and available narrative descriptions of deaths. We tested the hypothesis that SUDEP rates decrease with time using the Mann-Kendall nonparametric trend test and by comparing SUDEP rates of the first 2 years of follow-up (years 1-2) to longer follow-up (years 3-10). Our cohort included 277 661 person-years of follow-up and 3689 deaths, including 632 SUDEP. Primary analysis demonstrated a significant decrease in age-adjusted SUDEP rate during follow-up (S = -27 P = .008), with rates of 2.47/1000 for years 1-2 and 1.68/1000 for years 3-10 (rate ratio 0.68; 95% confidence interval [CI] 0.53-0.87; P = .002). Sensitivity analyses confirm these findings. Our data suggest that SUDEP risk significantly decreases during long-term follow-up of patients with refractory epilepsy receiving VNS Therapy. This finding might reflect several factors, including the natural long-term dynamic of SUDEP rate, attrition, and the impact of VNS Therapy. The role of each of these factors cannot be confirmed due to the limitations of the study

    Effect of local Coulomb interactions on the electronic structure and exchange interactions in Mn12 magnetic molecules

    Get PDF
    We have studied the effect of local Coulomb interactions on the electronic structure of the molecular magnet Mn12-acetate within the LDA+U approach. The account of the on-site repulsion results in a finite energy gap and an integer value of the molecule's magnetic moment, both quantities being in a good agreement with the experimental results. The resulting magnetic moments and charge states of non-equivalent manganese ions agree very well with experiments. The calculated values of the intramolecular exchange parameters depend on the molecule's spin configuration, differing by 25-30% between the ferrimagnetic ground state and the completely ferromagnetic configurations. The values of the ground-state exchange coupling parameters are in reasonable agreement with the recent data on the magnetization jumps in megagauss magnetic fields. Simple estimates show that the obtained exchange parameters can be applied, at least qualitatively, to the description of the spin excitations in Mn12-acetate.Comment: RevTeX, LaTeX2e, 4 EPS figure

    Stability Walls in Heterotic Theories

    Full text link
    We study the sub-structure of the heterotic Kahler moduli space due to the presence of non-Abelian internal gauge fields from the perspective of the four-dimensional effective theory. Internal gauge fields can be supersymmetric in some regions of the Kahler moduli space but break supersymmetry in others. In the context of the four-dimensional theory, we investigate what happens when the Kahler moduli are changed from the supersymmetric to the non-supersymmetric region. Our results provide a low-energy description of supersymmetry breaking by internal gauge fields as well as a physical picture for the mathematical notion of bundle stability. Specifically, we find that at the transition between the two regions an additional anomalous U(1) symmetry appears under which some of the states in the low-energy theory acquire charges. We compute the associated D-term contribution to the four-dimensional potential which contains a Kahler-moduli dependent Fayet-Iliopoulos term and contributions from the charged states. We show that this D-term correctly reproduces the expected physics. Several mathematical conclusions concerning vector bundle stability are drawn from our arguments. We also discuss possible physical applications of our results to heterotic model building and moduli stabilization.Comment: 37 pages, 4 figure

    Linewidth of single photon transitions in Mn12_{12}-acetate

    Full text link
    We use time-domain terahertz spectroscopy to measure the position and linewidth of single photon transitions in Mn12_{12}-acetate. This linewidth is compared to the linewidth measured in tunneling experiments. We conclude that local magnetic fields (due to dipole or hyperfine interactions) cannot be responsible for the observed linewidth, and suggest that the linewidth is due to variations in the anisotropy constants for different clusters. We also calculate a lower limit on the dipole field distribution that would be expected due to random orientations of clusters and find that collective effects must narrow this distribution in tunneling measurements.Comment: 5 pages, accepted to Physical Review
    corecore