3,714 research outputs found

    Duality and ontology

    Get PDF
    A ‘duality’ is a formal mapping between the spaces of solutions of two empirically equivalent theories. In recent times, dualities have been found to be pervasive in string theory and quantum field theory. Naïvely interpreted, duality-related theories appear to make very different ontological claims about the world—differing in e.g. space-time structure, fundamental ontology, and mereological structure. In light of this, duality-related theories raise questions familiar from discussions of underdetermination in the philosophy of science: in the presence of dual theories, what is one to say about the ontology of the world? In this paper, we undertake a comprehensive and non-technical survey of the landscape of possible ontological interpretations of duality-related theories. We provide a significantly enriched and clarified taxonomy of options—several of which are novel to the literature

    On the eigenvalues of Cayley graphs on the symmetric group generated by a complete multipartite set of transpositions

    Full text link
    Given a finite simple graph \cG with nn vertices, we can construct the Cayley graph on the symmetric group SnS_n generated by the edges of \cG, interpreted as transpositions. We show that, if \cG is complete multipartite, the eigenvalues of the Laplacian of \Cay(\cG) have a simple expression in terms of the irreducible characters of transpositions, and of the Littlewood-Richardson coefficients. As a consequence we can prove that the Laplacians of \cG and of \Cay(\cG) have the same first nontrivial eigenvalue. This is equivalent to saying that Aldous's conjecture, asserting that the random walk and the interchange process have the same spectral gap, holds for complete multipartite graphs.Comment: 29 pages. Includes modification which appear on the published version in J. Algebraic Combi

    Development of a plasma panel radiation detector: recent progress and key issues

    Full text link
    A radiation detector based on plasma display panel technology, which is the principal component of plasma television displays is presented. Plasma Panel Sensor (PPS) technology is a variant of micropattern gas radiation detectors. The PPS is conceived as an array of sealed plasma discharge gas cells which can be used for fast response (O(5ns) per pixel), high spatial resolution detection (pixel pitch can be less than 100 micrometer) of ionizing and minimum ionizing particles. The PPS is assembled from non-reactive, intrinsically radiation-hard materials: glass substrates, metal electrodes and inert gas mixtures. We report on the PPS development program, including simulations and design and the first laboratory studies which demonstrate the usage of plasma display panels in measurements of cosmic ray muons, as well as the expansion of experimental results on the detection of betas from radioactive sources.Comment: presented at IEEE NSS 2011 (Barcelona

    The Detection of Ionizing Radiation by Plasma Panel Sensors: Cosmic Muons, Ion Beams and Cancer Therapy

    Full text link
    The plasma panel sensor is an ionizing photon and particle radiation detector derived from PDP technology with high gain and nanosecond response. Experimental results in detecting cosmic ray muons and beta particles from radioactive sources are described along with applications including high energy and nuclear physics, homeland security and cancer therapeuticsComment: Presented at SID Symposium, June 201

    Relativistic Stellar Pulsations With Near-Zone Boundary Conditions

    Get PDF
    A new method is presented here for evaluating approximately the pulsation modes of relativistic stellar models. This approximation relies on the fact that gravitational radiation influences these modes only on timescales that are much longer than the basic hydrodynamic timescale of the system. This makes it possible to impose the boundary conditions on the gravitational potentials at the surface of the star rather than in the asymptotic wave zone of the gravitational field. This approximation is tested here by predicting the frequencies of the outgoing non-radial hydrodynamic modes of non-rotating stars. The real parts of the frequencies are determined with an accuracy that is better than our knowledge of the exact frequencies (about 0.01%) except in the most relativistic models where it decreases to about 0.1%. The imaginary parts of the frequencies are determined with an accuracy of approximately M/R, where M is the mass and R is the radius of the star in question.Comment: 10 pages (REVTeX 3.1), 5 figs., 1 table, fixed minor typos, published in Phys. Rev. D 56, 2118 (1997

    Unitarity and Causality in Generalized Quantum Mechanics for Non-Chronal Spacetimes

    Full text link
    Spacetime must be foliable by spacelike surfaces for the quantum mechanics of matter fields to be formulated in terms of a unitarily evolving state vector defined on spacelike surfaces. When a spacetime cannot be foliated by spacelike surfaces, as in the case of spacetimes with closed timelike curves, a more general formulation of quantum mechanics is required. In such generalizations the transition matrix between alternatives in regions of spacetime where states {\it can} be defined may be non-unitary. This paper describes a generalized quantum mechanics whose probabilities consistently obey the rules of probability theory even in the presence of such non-unitarity. The usual notion of state on a spacelike surface is lost in this generalization and familiar notions of causality are modified. There is no signaling outside the light cone, no non-conservation of energy, no ``Everett phones'', and probabilities of present events do not depend on particular alternatives of the future. However, the generalization is acausal in the sense that the existence of non-chronal regions of spacetime in the future can affect the probabilities of alternatives today. The detectability of non-unitary evolution and violations of causality in measurement situations are briefly considered. The evolution of information in non-chronal spacetimes is described.Comment: 40pages, UCSBTH92-0

    Plasma Panel Sensors for Particle and Beam Detection

    Full text link
    The plasma panel sensor (PPS) is an inherently digital, high gain, novel variant of micropattern gas detectors inspired by many operational and fabrication principles common to plasma display panels (PDPs). The PPS is comprised of a dense array of small, plasma discharge, gas cells within a hermetically-sealed glass panel, and is assembled from non-reactive, intrinsically radiation-hard materials such as glass substrates, metal electrodes and mostly inert gas mixtures. We are developing the technology to fabricate these devices with very low mass and small thickness, using gas gaps of at least a few hundred micrometers. Our tests with these devices demonstrate a spatial resolution of about 1 mm. We intend to make PPS devices with much smaller cells and the potential for much finer position resolutions. Our PPS tests also show response times of several nanoseconds. We report here our results in detecting betas, cosmic-ray muons, and our first proton beam tests.Comment: 2012 IEEE NS

    Generalized r-Modes of the Maclaurin Spheroids

    Get PDF
    Analytical solutions are presented for a class of generalized r-modes of rigidly rotating uniform density stars---the Maclaurin spheroids---with arbitrary values of the angular velocity. Our analysis is based on the work of Bryan; however, we derive the solutions using slightly different coordinates that give purely real representations of the r-modes. The class of generalized r-modes is much larger than the previously studied `classical' r-modes. In particular, for each l and m we find l-m (or l-1 for the m=0 case) distinct r-modes. Many of these previously unstudied r-modes (about 30% of those examined) are subject to a secular instability driven by gravitational radiation. The eigenfunctions of the `classical' r-modes, the l=m+1 case here, are found to have particularly simple analytical representations. These r-modes provide an interesting mathematical example of solutions to a hyperbolic eigenvalue problem.Comment: 12 pages, 3 figures; minor changes and additions as will appear in the version to be published in Physical Review D, January 199

    A Variational Principle Based Study of KPP Minimal Front Speeds in Random Shears

    Full text link
    Variational principle for Kolmogorov-Petrovsky-Piskunov (KPP) minimal front speeds provides an efficient tool for statistical speed analysis, as well as a fast and accurate method for speed computation. A variational principle based analysis is carried out on the ensemble of KPP speeds through spatially stationary random shear flows inside infinite channel domains. In the regime of small root mean square (rms) shear amplitude, the enhancement of the ensemble averaged KPP front speeds is proved to obey the quadratic law under certain shear moment conditions. Similarly, in the large rms amplitude regime, the enhancement follows the linear law. In particular, both laws hold for the Ornstein-Uhlenbeck process in case of two dimensional channels. An asymptotic ensemble averaged speed formula is derived in the small rms regime and is explicit in case of the Ornstein-Uhlenbeck process of the shear. Variational principle based computation agrees with these analytical findings, and allows further study on the speed enhancement distributions as well as the dependence of enhancement on the shear covariance. Direct simulations in the small rms regime suggest quadratic speed enhancement law for non-KPP nonlinearities.Comment: 28 pages, 14 figures update: fixed typos, refined estimates in section
    corecore