15,978 research outputs found

    Interplay between parallel and diagonal electronic nematic phases in interacting systems

    Full text link
    An electronic nematic phase can be classified by a spontaneously broken discrete rotational symmetry of a host lattice. In a square lattice, there are two distinct nematic phases. The parallel nematic phase breaks xx and yy symmetry, while the diagonal nematic phase breaks the diagonal (x+y)(x+y) and anti-diagonal (x−y)(x-y) symmetry. We investigate the interplay between the parallel and diagonal nematic orders using mean field theory. We found that the nematic phases compete with each other, while they coexist in a finite window of parameter space. The quantum critical point between the diagonal nematic and isotropic phases exists, and its location in a phase diagram depends on the topology of the Fermi surface. We discuss the implication of our results in the context of neutron scattering and Raman spectroscopy measurements on La2−x_{2-x}Srx_xCuO4_4.Comment: 8 pages, 10 figure

    Persistent current in superconducting nanorings

    Full text link
    The superconductivity in very thin rings is suppressed by quantum phase slips. As a result the amplitude of the persistent current oscillations with flux becomes exponentially small, and their shape changes from sawtooth to a sinusoidal one. We reduce the problem of low-energy properties of a superconducting nanoring to that of a quantum particle in a sinusoidal potential and show that the dependence of the current on the flux belongs to a one-parameter family of functions obtained by solving the respective Schrodinger equation with twisted boundary conditions.Comment: 5 pages, 1 figur

    Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting.

    Get PDF
    Cichlid fishes are a key model system in the study of adaptive radiation, speciation and evolutionary developmental biology. More than 1600 cichlid species inhabit freshwater and marginal marine environments across several southern landmasses. This distributional pattern, combined with parallels between cichlid phylogeny and sequences of Mesozoic continental rifting, has led to the widely accepted hypothesis that cichlids are an ancient group whose major biogeographic patterns arose from Gondwanan vicariance. Although the Early Cretaceous (ca 135 Ma) divergence of living cichlids demanded by the vicariance model now represents a key calibration for teleost molecular clocks, this putative split pre-dates the oldest cichlid fossils by nearly 90 Myr. Here, we provide independent palaeontological and relaxed-molecular-clock estimates for the time of cichlid origin that collectively reject the antiquity of the group required by the Gondwanan vicariance scenario. The distribution of cichlid fossil horizons, the age of stratigraphically consistent outgroup lineages to cichlids and relaxed-clock analysis of a DNA sequence dataset consisting of 10 nuclear genes all deliver overlapping estimates for crown cichlid origin centred on the Palaeocene (ca 65-57 Ma), substantially post-dating the tectonic fragmentation of Gondwana. Our results provide a revised macroevolutionary time scale for cichlids, imply a role for dispersal in generating the observed geographical distribution of this important model clade and add to a growing debate that questions the dominance of the vicariance paradigm of historical biogeography

    Use of Most Bothersome Symptom as a Coprimary Endpoint in Migraine Clinical Trials: A Post-Hoc Analysis of the Pivotal ZOTRIP Randomized, Controlled Trial.

    Get PDF
    ObjectiveTo better understand the utility of using pain freedom and most bothersome headache-associated symptom (MBS) freedom as co-primary endpoints in clinical trials of acute migraine interventions.BackgroundAdhesive dermally applied microarray (ADAM) is an investigational system for intracutaneous drug administration. The recently completed pivotal Phase 2b/3 study (ZOTRIP), evaluating ADAM zolmitriptan for the treatment of acute moderate to severe migraine, was one of the first large studies to incorporate MBS freedom and pain freedom as co-primary endpoints per recently issued guidance by the US Food and Drug Administration. In this trial, the proportion of patients treated with ADAM zolmitriptan 3.8 mg, who were pain-free and MBS-free at 2 hours post-dose, was significantly higher than for placebo.MethodsWe undertook a post-hoc analysis of data from the ZOTRIP trial to examine how the outcomes from this trial compare to what might have been achieved using the conventional co-primary endpoints of pain relief, nausea, photophobia, and phonophobia.ResultsOf the 159 patients treated with ADAM zolmitriptan 3.8 mg or placebo, prospectively designated MBS were photophobia (n = 79), phonophobia (n = 43), and nausea (n = 37). Two-hour pain free rates in those with photophobia as the MBS were 36% for ADAM zolmitriptan 3.8 mg and 14% for placebo (P = .02). Corresponding rates for those with phonophobia as the MBS were 14% and 41% (P = .05). For those whose MBS was nausea, corresponding values were 56% and 16%, respectively (P = .01). Two-hour freedom from the MBS for active drug vs placebo were 67% vs 35% (P < .01) for photophobia, 55% vs 43% (P = .45) for phonophobia, and 89% vs 58% for nausea (P = .04). MBS freedom but not pain freedom was achieved in 28%. Only 1 patient (1%) achieved pain freedom, but not MBS freedom. The proportion with both pain and MBS freedom was highest (56%) among those whose MBS was nausea.ConclusionIn this study, the use of MBS was feasible and seemed to compare favorably to the previously required 4 co-primary endpoints

    Anomalous Hall Effect in Ferromagnetic Semiconductors in the Hopping Transport Regime

    Full text link
    We present a theory of the Anomalous Hall Effect (AHE) in ferromagnetic (Ga,Mn)As in the regime when conduction is due to phonon-assisted hopping of holes between localized states in the impurity band. We show that the microscopic origin of the anomalous Hall conductivity in this system can be attributed to a phase that a hole gains when hopping around closed-loop paths in the presence of spin-orbit interactions and background magnetization of the localized Mn moments. Mapping the problem to a random resistor network, we derive an analytic expression for the macroscopic anomalous Hall conductivity σxyAH\sigma_{xy}^{AH}. We show that σxyAH\sigma_{xy}^{AH} is proportional to the first derivative of the density of states ϱ(ϵ)\varrho(\epsilon) and thus can be expected to change sign as a function of impurity band filling. We also show that σxyAH\sigma_{xy}^{AH} depends on temperature as the longitudinal conductivity σxx\sigma_{xx} within logarithmic accuracy.Comment: 4 pages, 1 eps figure, final versio

    A Tverberg type theorem for matroids

    Full text link
    Let b(M) denote the maximal number of disjoint bases in a matroid M. It is shown that if M is a matroid of rank d+1, then for any continuous map f from the matroidal complex M into the d-dimensional Euclidean space there exist t \geq \sqrt{b(M)}/4 disjoint independent sets \sigma_1,\ldots,\sigma_t \in M such that \bigcap_{i=1}^t f(\sigma_i) \neq \emptyset.Comment: This article is due to be published in the collection of papers "A Journey through Discrete Mathematics. A Tribute to Jiri Matousek" edited by Martin Loebl, Jaroslav Nesetril and Robin Thomas, due to be published by Springe

    The Quantum Propagator for a Nonrelativistic Particle in the Vicinity of a Time Machine

    Get PDF
    We study the propagator of a non-relativistic, non-interacting particle in any non-relativistic ``time-machine'' spacetime of the type shown in Fig.~1: an external, flat spacetime in which two spatial regions, V−V_- at time t−t_- and V+V_+ at time t+t_+, are connected by two temporal wormholes, one leading from the past side of V−V_- to t the future side of V+V_+ and the other from the past side of V+V_+ to the future side of V−V_-. We express the propagator explicitly in terms of those for ordinary, flat spacetime and for the two wormholes; and from that expression we show that the propagator satisfies completeness and unitarity in the initial and final ``chronal regions'' (regions without closed timelike curves) and its propagation from the initial region to the final region is unitary. However, within the time machine it satisfies neither completeness nor unitarity. We also give an alternative proof of initial-region-to-final-region unitarity based on a conserved current and Gauss's theorem. This proof can be carried over without change to most any non-relativistic time-machine spacetime; it is the non-relativistic version of a theorem by Friedman, Papastamatiou and Simon, which says that for a free scalar field, quantum mechanical unitarity follows from the fact that the classical evolution preserves the Klein-Gordon inner product
    • …
    corecore