2,593 research outputs found
Robust autoresonant excitation in the plasma beat-wave accelerator: a theoretical study
A modified version of the Plasma Beat-Wave Accelerator scheme is introduced
and analyzed, which is based on autoresonant phase-locking of the nonlinear
Langmuir wave to the slowly chirped beat frequency of the driving lasers via
adiabatic passage through resonance. This new scheme is designed to overcome
some of the well-known limitations of previous approaches, namely relativistic
detuning and nonlinear modulation or other non-uniformity or non-stationarity
in the driven Langmuir wave amplitude, and sensitivity to frequency mismatch
due to measurement uncertainties and density fluctuations and inhomogeneities
Multihazard hurricane fragility model for wood structure homes considering hazard parameters and building attributes interaction.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).Predicting building damage as a function of hurricane hazards, building attributes, and the interaction between hazard and building attributes is a key to understanding how significant interaction reflects variation hazard intensity effect on damage based on building attribute levels. This paper develops multihazard hurricane fragility models for wood structure homes considering interaction between hazard and building attributes. Fragility models are developed for ordered categorical damage states (DS) and binary collapse/no collapse. Exterior physical damage and building attributes from rapid assessment in coastal Mississippi following Hurricane Katrina (2005), high-resolution numerical hindcast hazard intensities from the Simulating WAves Nearshore and ADvanced CIRCulation (SWAN+ADCIRC) models, and base flood elevation values are used as model input. Leave-one-out cross-validation (LOOCV) is used to evaluate model prediction accuracy. Eleven and forty-nine combinations of global damage response variables and main explanatory variables, respectively, were investigated and evaluated. Of these models, one DS and one collapse model met the rejection criteria. These models were refitted considering interaction terms. Maximum 3-s gust wind speed and maximum significant wave height were found to be factors that significantly affect damage. The interaction between maximum significant wave height and number of stories was the significant interaction term for the DS and collapse models. For every 0.3 m (0.98 ft) increase in maximum significant wave height, the estimated odds of being in a higher rather than in a lower damage state for DS model were found to be 1.95 times greater for one- rather than for two-story buildings. For every 0.3 m (0.98 ft) increase in maximum significant wave height, the estimated odds of collapse were found to be 2.23 times greater for one- rather than for two-story buildings. Model prediction accuracy was 84% and 91% for DS and collapse models, respectively. This paper does not consider the full hazard intensity experienced in Hurricane Katrina; rather, it focuses on single-family homes in a defined study area subjected to wind, wave, and storm surge hazards. Thus, the findings of this paper are not applicable for events with hazards that exceed those experienced in the study area, from which the models were derived.ECU Open Access Publishing Support Fun
Frohlich mass in GaAs-based structures
The Frohlich interaction is one of the main electron-phonon intrinsic
interactions in polar materials originating from the coupling of one itinerant
electron with the macroscopic electric field generated by any longitudinal
optical (LO) phonon. Infra-red magneto-absorption measurements of doped GaAs
quantum wells structures have been carried out in order to test the concept of
Frohlich interaction and polaron mass in such systems. These new experimental
results lead to question the validity of this concept in a real system.Comment: 4 pages, 3 figure
Quantized Dispersion of Two-Dimensional Magnetoplasmons Detected by Photoconductivity Spectroscopy
We find that the long-wavelength magnetoplasmon, resistively detected by
photoconductivity spectroscopy in high-mobility two-dimensional electron
systems, deviates from its well-known semiclassical nature as uncovered in
conventional absorption experiments. A clear filling-factor dependent
plateau-type dispersion is observed that reveals a so far unknown relation
between the magnetoplasmon and the quantum Hall effect.Comment: 5 pages, 3 figure
A theorem of Tits type for compact Kahler manifolds
We prove a theorem of Tits type about automorphism groups for compact Kahler
manifolds, which has been conjectured in the paper [KOZ].Comment: Inventiones Mathematicae (to appear), 11 page
Natural ventilation for the prevention of airborne contagion.
BACKGROUND: Institutional transmission of airborne infections such as tuberculosis (TB) is an important public health problem, especially in resource-limited settings where protective measures such as negative-pressure isolation rooms are difficult to implement. Natural ventilation may offer a low-cost alternative. Our objective was to investigate the rates, determinants, and effects of natural ventilation in health care settings. METHODS AND FINDINGS: The study was carried out in eight hospitals in Lima, Peru; five were hospitals of "old-fashioned" design built pre-1950, and three of "modern" design, built 1970-1990. In these hospitals 70 naturally ventilated clinical rooms where infectious patients are likely to be encountered were studied. These included respiratory isolation rooms, TB wards, respiratory wards, general medical wards, outpatient consulting rooms, waiting rooms, and emergency departments. These rooms were compared with 12 mechanically ventilated negative-pressure respiratory isolation rooms built post-2000. Ventilation was measured using a carbon dioxide tracer gas technique in 368 experiments. Architectural and environmental variables were measured. For each experiment, infection risk was estimated for TB exposure using the Wells-Riley model of airborne infection. We found that opening windows and doors provided median ventilation of 28 air changes/hour (ACH), more than double that of mechanically ventilated negative-pressure rooms ventilated at the 12 ACH recommended for high-risk areas, and 18 times that with windows and doors closed (p < 0.001). Facilities built more than 50 years ago, characterised by large windows and high ceilings, had greater ventilation than modern naturally ventilated rooms (40 versus 17 ACH; p < 0.001). Even within the lowest quartile of wind speeds, natural ventilation exceeded mechanical (p < 0.001). The Wells-Riley airborne infection model predicted that in mechanically ventilated rooms 39% of susceptible individuals would become infected following 24 h of exposure to untreated TB patients of infectiousness characterised in a well-documented outbreak. This infection rate compared with 33% in modern and 11% in pre-1950 naturally ventilated facilities with windows and doors open. CONCLUSIONS: Opening windows and doors maximises natural ventilation so that the risk of airborne contagion is much lower than with costly, maintenance-requiring mechanical ventilation systems. Old-fashioned clinical areas with high ceilings and large windows provide greatest protection. Natural ventilation costs little and is maintenance free, and is particularly suited to limited-resource settings and tropical climates, where the burden of TB and institutional TB transmission is highest. In settings where respiratory isolation is difficult and climate permits, windows and doors should be opened to reduce the risk of airborne contagion
Evidence for magnetoplasmon character of the cyclotron resonance response of a two-dimensional electron gas
Experimental results on the absolute magneto-transmission of a series of high
density, high mobility GaAs quantum wells are compared with the predictions of
a recent magnetoplasmon theory for values of the filling factor above 2. We
show that the magnetoplasmon picture can explain the non-linear features
observed in the magnetic field evolution of the cyclotron resonance energies
and of the absorption oscillator strength. This provides experimental evidence
that inter Landau level excitations probed by infrared spectroscopy need to be
considered as many body excitations in terms of magnetoplasmons: this is
especially true when interpreting the oscillator strengths of the cyclotron
transitions
Magneto infra-red absorption in high electronic density GaAs quantum wells
Magneto infra-red absorption measurements have been performed in a highly
doped GaAs quantum well which has been lifted off and bonded to a silicon
substrate, in order to study the resonant polaron interaction. It is found that
the pinning of the cyclotron energy occurs at an energy close to that of the
transverse optical phonon of GaAs. This unexpected result is explained by a
model taking into account the full dielectric constant of the quantum well.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let
Do many-particle neutrino interactions cause a novel coherent effect?
We investigate whether coherent flavor conversion of neutrinos in a neutrino
background is substantially modified by many-body effects, with respect to the
conventional one-particle effective description. We study the evolution of a
system of interacting neutrino plane waves in a box. Using its equivalence to a
system of spins, we determine the character of its behavior completely
analytically. We find that, if the neutrinos are initially in flavor
eigenstates, no coherent flavor conversion is realized, in agreement with the
effective one-particle description. This result does not depend on the size of
the neutrino wavepackets and therefore has a general character. The validity of
the several important applications of the one-particle formalism is thus
confirmed.Comment: 25 pages, 1 figur
- …