5,147 research outputs found

    Physical picture for the anomalous progagation of ordinary electromagnetic waves in a plasma

    Get PDF
    It is shown that the physical mechanism for the anomalous propagation of electromagnetic waves at frequencies below the plasma frequency is due to the deflection of particle thermal motions by the wave magnetic field, leading to a density perturbation which can be large when enhanced by some resonance. In presence of an external magnetic field, cyclotron resonance provides the enhancement for ordinary waves. A waveparticle resonance gives rise to anomalous propagation if the velocity distribution is anisotropic with respect to the wave vector, which allows slow electromagnetic waves, with phase velocity less than the velocity of light

    The formation of ion acoustic shocks

    Get PDF
    Recent experiments performed in the double plasma (DP) device have verified the existence of electrostatic ion acoustic laminar shocks. The influence of the piston on the shock structure is investigated by modeling the DP device and by numerically solving the temporal and spatial evolution of the shock. In order to isolate piston effects, as opposed to kinetic theory effects such as reflected ions and trapped electrons, the DP plasma is modeled as a cold ion fluid with isothermal Boltzmann electrons. It is shown that laminar shock transitions with structure agreeing with DP shock experiments can be excited

    Eye-CU: Sleep Pose Classification for Healthcare using Multimodal Multiview Data

    Full text link
    Manual analysis of body poses of bed-ridden patients requires staff to continuously track and record patient poses. Two limitations in the dissemination of pose-related therapies are scarce human resources and unreliable automated systems. This work addresses these issues by introducing a new method and a new system for robust automated classification of sleep poses in an Intensive Care Unit (ICU) environment. The new method, coupled-constrained Least-Squares (cc-LS), uses multimodal and multiview (MM) data and finds the set of modality trust values that minimizes the difference between expected and estimated labels. The new system, Eye-CU, is an affordable multi-sensor modular system for unobtrusive data collection and analysis in healthcare. Experimental results indicate that the performance of cc-LS matches the performance of existing methods in ideal scenarios. This method outperforms the latest techniques in challenging scenarios by 13% for those with poor illumination and by 70% for those with both poor illumination and occlusions. Results also show that a reduced Eye-CU configuration can classify poses without pressure information with only a slight drop in its performance.Comment: Ten-page manuscript including references and ten figure

    Vlasov simulation in multiple spatial dimensions

    Full text link
    A long-standing challenge encountered in modeling plasma dynamics is achieving practical Vlasov equation simulation in multiple spatial dimensions over large length and time scales. While direct multi-dimension Vlasov simulation methods using adaptive mesh methods [J. W. Banks et al., Physics of Plasmas 18, no. 5 (2011): 052102; B. I. Cohen et al., November 10, 2010, http://meetings.aps.org/link/BAPS.2010.DPP.NP9.142] have recently shown promising results, in this paper we present an alternative, the Vlasov Multi Dimensional (VMD) model, that is specifically designed to take advantage of solution properties in regimes when plasma waves are confined to a narrow cone, as may be the case for stimulated Raman scatter in large optic f# laser beams. Perpendicular grid spacing large compared to a Debye length is then possible without instability, enabling an order 10 decrease in required computational resources compared to standard particle in cell (PIC) methods in 2D, with another reduction of that order in 3D. Further advantage compared to PIC methods accrues in regimes where particle noise is an issue. VMD and PIC results in a 2D model of localized Langmuir waves are in qualitative agreement

    Bowen Measure From Heteroclinic Points

    Full text link
    We present a new construction of the entropy-maximizing, invariant probability measure on a Smale space (the Bowen measure). Our construction is based on points that are unstably equivalent to one given point, and stably equivalent to another: heteroclinic points. The spirit of the construction is similar to Bowen's construction from periodic points, though the techniques are very different. We also prove results about the growth rate of certain sets of heteroclinic points, and about the stable and unstable components of the Bowen measure. The approach we take is to prove results through direct computation for the case of a Shift of Finite type, and then use resolving factor maps to extend the results to more general Smale spaces

    Stimulated Raman spin coherence and spin-flip induced hole burning in charged GaAs quantum dots

    Full text link
    High-resolution spectral hole burning (SHB) in coherent nondegenerate differential transmission spectroscopy discloses spin-trion dynamics in an ensemble of negatively charged quantum dots. In the Voigt geometry, stimulated Raman spin coherence gives rise to Stokes and anti-Stokes sidebands on top of the trion spectral hole. The prominent feature of an extremely narrow spike at zero detuning arises from spin population pulsation dynamics. These SHB features confirm coherent electron spin dynamics in charged dots, and the linewidths reveal spin spectral diffusion processes.Comment: 5 pages, 5 figure

    Kinetic Enhancement of Raman Backscatter, and Electron Acoustic Thomson Scatter

    Get PDF
    1-D Eulerian Vlasov-Maxwell simulations are presented which show kinetic enhancement of stimulated Raman backscatter (SRBS) due to electron trapping in regimes of heavy linear Landau damping. The conventional Raman Langmuir wave is transformed into a set of beam acoustic modes [L. Yin et al., Phys. Rev. E 73, 025401 (2006)]. For the first time, a low phase velocity electron acoustic wave (EAW) is seen developing from the self-consistent Raman physics. Backscatter of the pump laser off the EAW fluctuations is reported and referred to as electron acoustic Thomson scatter. This light is similar in wavelength to, although much lower in amplitude than, the reflected light between the pump and SRBS wavelengths observed in single hot spot experiments, and previously interpreted as stimulated electron acoustic scatter [D. S. Montgomery et al., Phys. Rev. Lett. 87, 155001 (2001)]. The EAW is strongest well below the phase-matched frequency for electron acoustic scatter, and therefore the EAW is not produced by it. The beating of different beam acoustic modes is proposed as the EAW excitation mechanism, and is called beam acoustic decay. Supporting evidence for this process, including bispectral analysis, is presented. The linear electrostatic modes, found by projecting the numerical distribution function onto a Gauss-Hermite basis, include beam acoustic modes (some of which are unstable even without parametric coupling to light waves) and a strongly-damped EAW similar to the observed one. This linear EAW results from non-Maxwellian features in the electron distribution, rather than nonlinearity due to electron trapping.Comment: 15 pages, 16 figures, accepted in Physics of Plasmas (2006

    Photochemistry in the arctic free troposphere: NOx budget and the role of odd nitrogen reservoir recycling

    Get PDF
    The budget of nitrogen oxides (NOx) in the arctic free troposphere is calculated with a constrained photochemical box model using aircraft observations from the Tropospheric O3 Production about the Spring Equinox (TOPSE) campaign between February and May. Peroxyacetic nitric anhydride (PAN) was observed to be the dominant odd nitrogen species (NOy) in the arctic free troposphere and showed a pronounced seasonal increase in mixing ratio. When constrained to observed acetaldehyde (CH3CHO) mixing ratios, the box model calculates unrealistically large net NOx losses due to PAN formation (62pptv/day for May, 1-3km). Thus, given our current understanding of atmospheric chemistry, these results cast doubt on the robustness of the CH3CHO observations during TOPSE. When CH3CHO was calculated to steady state in the box model, the net NOx loss to PAN was of comparable magnitude to the net NOx loss to HNO3 (NO2 reaction with OH) for spring conditions. During the winter, net NOx loss due to N2O5 hydrolysis dominates other NOx loss processes and is near saturation with respect to further increases in aerosol surface area concentration. NOx loss due to N2O5 hydrolysis is sensitive to latitude and month due to changes in diurnal photolysis (sharp day-night transitions in winter to continuous sun in spring for the arctic). Near NOx sources, HNO4 is a net sink for NOx; however, for more aged air masses HNO4 is a net source for NOx, largely countering the NOx loss to PAN, N2O5 and HNO3. Overall, HNO4 chemistry impacts the timing of NOx decay and O3 production; however, the cumulative impact on O3 and NOx mixing ratios after a 20-day trajectory is minimal. © 2003 Elsevier Science Ltd. All rights reserved

    An Analysis of Fundamental Waffle Mode in Early AEOS Adaptive Optics Images

    Full text link
    Adaptive optics (AO) systems have significantly improved astronomical imaging capabilities over the last decade, and are revolutionizing the kinds of science possible with 4-5m class ground-based telescopes. A thorough understanding of AO system performance at the telescope can enable new frontiers of science as observations push AO systems to their performance limits. We look at recent advances with wave front reconstruction (WFR) on the Advanced Electro-Optical System (AEOS) 3.6 m telescope to show how progress made in improving WFR can be measured directly in improved science images. We describe how a "waffle mode" wave front error (which is not sensed by a Fried geometry Shack-Hartmann wave front sensor) affects the AO point-spread function (PSF). We model details of AEOS AO to simulate a PSF which matches the actual AO PSF in the I-band, and show that while the older observed AEOS PSF contained several times more waffle error than expected, improved WFR techniques noticeably improve AEOS AO performance. We estimate the impact of these improved WFRs on H-band imaging at AEOS, chosen based on the optimization of the Lyot Project near-infrared coronagraph at this bandpass.Comment: 15 pages, 11 figures, 1 table; to appear in PASP, August 200
    • …
    corecore