73 research outputs found

    A prospective trial of tacrolimus (FK 506) in clinical heart transplantation: Intermediate-term results

    Get PDF
    Between January 1, 1989, and December 31, 1994, we have treated 122 primary heart recipients with FK 506 (group I) and 121 with cyclosporine (group II). Fifty patients in the cyclosporine (CyA) group received no lympholytic induction (CyA alone) and 71 others received lympholytic induction with either rabbit antithymocyte globulin or OKT3 (CyA+LI). The mean follow-up was longer in the FK 506 group than in the CyA groups (3.2 ± 1.3 vs 2.3 ± 1.8 years; p < 0.01). Patient survival did not differ on the basis of the type of immunosuppression used. At 3 months after transplantation, the freedom from rejection in the FK 506 group was higher than that of the CyA-alone group (47% vs 22%, p < 0.01) but similar to that of the CyA+LI group (47% vs 53%). The linearized rejection rate (episodes/100 patient-days) of the FK 506 group (0.09 episodes) was lower (p < 0.05) than that of the CyA-alone group (0.26) and the CyA+LI group (0.13). The requirement for pulsed steroids to treat rejection was less in common in the FK 506 group than in either CyA group. Eighteen patients in the CyA group had refractory rejections; all resolved with FK 506 rescue. Two patients in the FK 506 group had refractory rejection that resolved with total lymphoid irradiation (n = 1) and methotrexate therapy (n = 1). Patients receiving FK 506 had a lower risk of hypertension and required a lower dose of steroids. Although the mean serum creatinine concentration at 1 year was higher in the FK 506 group, this difference disappeared after 2 years. No patients required discontinuation of FK 506 because of its side effects. Our intermediate-term results indicate that FK 506 compares favorably with CyA as a primary immunosuppressant in heart transplantation

    Clonal human fetal ventral mesencephalic dopaminergic neuron precursors for cell therapy research

    Get PDF
    A major challenge for further development of drug screening procedures, cell replacement therapies and developmental studies is the identification of expandable human stem cells able to generate the cell types needed. We have previously reported the generation of an immortalized polyclonal neural stem cell (NSC) line derived from the human fetal ventral mesencephalon (hVM1). This line has been biochemically, genetically, immunocytochemically and electrophysiologically characterized to document its usefulness as a model system for the generation of A9 dopaminergic neurons (DAn). Long-term in vivo transplantation studies in parkinsonian rats showed that the grafts do not mature evenly. We reasoned that diverse clones in the hVM1 line might have different abilities to differentiate. In the present study, we have analyzed 9 hVM1 clones selected on the basis of their TH generation potential and, based on the number of v-myc copies, v-myc down-regulation after in vitro differentiation, in vivo cell cycle exit, TH+ neuron generation and expression of a neuronal mature marker (hNSE), we selected two clones for further in vivo PD cell replacement studies. The conclusion is that homogeneity and clonality of characterized NSCs allow transplantation of cells with controlled properties, which should help in the design of long-term in vivo experimentsThis work was supported by grants from the Spanish Ministry of Economy and Competitiveness (formerly Science and Innovation; PLE2009-0101, SAF2010-17167), Comunidad Autónoma Madrid (S2011-BMD-2336), Instituto Salud Carlos III (RETICS TerCel, RD06/0010/0009) and European Union (Excell, NMP4-SL-2008-214706). This work was also supported by an institutional grant from Foundation Ramón Areces to the Center of Molecular Biology Severo Ocho

    Cannabidiol causes activated hepatic stellate cell death through a mechanism of endoplasmic reticulum stress-induced apoptosis

    Get PDF
    The major cellular event in the development and progression of liver fibrosis is the activation of hepatic stellate cells (HSCs). Activated HSCs proliferate and produce excess collagen, leading to accumulation of scar matrix and fibrotic liver. As such, the induction of activated HSC death has been proposed as a means to achieve resolution of liver fibrosis. Here we demonstrate that cannabidiol (CBD), a major non-psychoactive component of the plant Cannabis sativa, induces apoptosis in activated HSCs through a cannabinoid receptor-independent mechanism. CBD elicits an endoplasmic reticulum (ER) stress response, characterized by changes in ER morphology and the initiation of RNA-dependent protein kinase-like ER kinase-, activating transcription factor-6-, and inositol-requiring ER-to-nucleus signal kinase-1 (IRE1)-mediated signaling cascades. Furthermore, CBD induces downstream activation of the pro-apoptotic IRE1/ASK1/c-Jun N-terminal kinase pathway, leading to HSC death. Importantly, we show that this mechanism of CBD-induced ER stress-mediated apoptosis is specific to activated HSCs, as it occurs in activated human and rat HSC lines, and in primary in vivo-activated mouse HSCs, but not in quiescent HSCs or primary hepatocytes from rat. Finally, we provide evidence that the elevated basal level of ER stress in activated HSCs has a role in their susceptibility to the pro-apoptotic effect of CBD. We propose that CBD, by selectively inducing death of activated HSCs, represents a potential therapeutic agent for the treatment of liver fibrosis

    A Threshold Equation for Action Potential Initiation

    Get PDF
    In central neurons, the threshold for spike initiation can depend on the stimulus and varies between cells and between recording sites in a given cell, but it is unclear what mechanisms underlie this variability. Properties of ionic channels are likely to play a role in threshold modulation. We examined in models the influence of Na channel activation, inactivation, slow voltage-gated channels and synaptic conductances on spike threshold. We propose a threshold equation which quantifies the contribution of all these mechanisms. It provides an instantaneous time-varying value of the threshold, which applies to neurons with fluctuating inputs. We deduce a differential equation for the threshold, similar to the equations of gating variables in the Hodgkin-Huxley formalism, which describes how the spike threshold varies with the membrane potential, depending on channel properties. We find that spike threshold depends logarithmically on Na channel density, and that Na channel inactivation and K channels can dynamically modulate it in an adaptive way: the threshold increases with membrane potential and after every action potential. Our equation was validated with simulations of a previously published multicompartemental model of spike initiation. Finally, we observed that threshold variability in models depends crucially on the shape of the Na activation function near spike initiation (about −55 mV), while its parameters are adjusted near half-activation voltage (about −30 mV), which might explain why many models exhibit little threshold variability, contrary to experimental observations. We conclude that ionic channels can account for large variations in spike threshold

    Common breast cancer susceptibility alleles are associated with tumor subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2.

    Get PDF
    • …
    corecore