2,535 research outputs found

    Long-time behavior of MHD shell models

    Full text link
    The long time behavior of velocity-magnetic field alignment is numerically investigated in the framework of MHD shell model. In the stationary forced case, the correlation parameter C displays a nontrivial behavior with long periods of high variability which alternates with periods of almost constant C. The temporal statistics of correlation is shown to be non Poissonian, and the pdf of constant sign periods displays clear power law tails. The possible relevance of the model for geomagnetic dynamo problem is discussed.Comment: 6 pages with 5 figures. In press on Europhysics Letter

    Statistical Mechanics of Shell Models for 2D-Turbulence

    Full text link
    We study shell models that conserve the analogues of energy and enstrophy, hence designed to mimic fluid turbulence in 2D. The main result is that the observed state is well described as a formal statistical equilibrium, closely analogous to the approach to two-dimensional ideal hydrodynamics of Onsager, Hopf and Lee. In the presence of forcing and dissipation we observe a forward flux of enstrophy and a backward flux of energy. These fluxes can be understood as mean diffusive drifts from a source to two sinks in a system which is close to local equilibrium with Lagrange multipliers (``shell temperatures'') changing slowly with scale. The dimensional predictions on the power spectra from a supposed forward cascade of enstrophy, and from one branch of the formal statistical equilibrium, coincide in these shell models at difference to the corresponding predictions for the Navier-Stokes and Euler equations in 2D. This coincidence have previously led to the mistaken conclusion that shell models exhibit a forward cascade of enstrophy.Comment: 25 pages + 9 figures, TeX dialect: RevTeX 3.

    Quay voices in Glasgow museums : an oral history of Glasgow dock workers

    Get PDF
    Notes on oral history project commissioned by Glasgow museums about Glasgow dock workers

    Strain bursts in plastically deforming Molybdenum micro- and nanopillars

    Full text link
    Plastic deformation of micron and sub-micron scale specimens is characterized by intermittent sequences of large strain bursts (dislocation avalanches) which are separated by regions of near-elastic loading. In the present investigation we perform a statistical characterization of strain bursts observed in stress-controlled compressive deformation of monocrystalline Molybdenum micropillars. We characterize the bursts in terms of the associated elongation increments and peak deformation rates, and demonstrate that these quantities follow power-law distributions that do not depend on specimen orientation or stress rate. We also investigate the statistics of stress increments in between the bursts, which are found to be Weibull distributed and exhibit a characteristic size effect. We discuss our findings in view of observations of deformation bursts in other materials, such as face-centered cubic and hexagonal metals.Comment: 14 pages, 8 figures, submitted to Phil Ma

    Symmetrization and enhancement of the continuous Morlet transform

    Full text link
    The forward and inverse wavelet transform using the continuous Morlet basis may be symmetrized by using an appropriate normalization factor. The loss of response due to wavelet truncation is addressed through a renormalization of the wavelet based on power. The spectral density has physical units which may be related to the squared amplitude of the signal, as do its margins the mean wavelet power and the integrated instant power, giving a quantitative estimate of the power density with temporal resolution. Deconvolution with the wavelet response matrix reduces the spectral leakage and produces an enhanced wavelet spectrum providing maximum resolution of the harmonic content of a signal. Applications to data analysis are discussed.Comment: 12 pages, 8 figures, 2 tables, minor revision, final versio

    Mode Coupling relaxation scenario in a confined glass former

    Full text link
    Molecular dynamics simulations of a Lennard-Jones binary mixture confined in a disordered array of soft spheres are presented. The single particle dynamical behavior of the glass former is examined upon supercooling. Predictions of mode coupling theory are satisfied by the confined liquid. Estimates of the crossover temperature are obtained by power law fit to the diffusion coefficients and relaxation times of the late α\alpha region. The bb exponent of the von Schweidler law is also evaluated. Similarly to the bulk, different values of the exponent γ\gamma are extracted from the power law fit to the diffusion coefficients and relaxation times.Comment: 5 pages, 4 figures, changes in the text, accepted for publication on Europhysics Letter

    Potential for energy conservation in feeding livestock and poultry in the United States, Station Bulletin, no.506

    Get PDF
    The Bulletin is a publication of the New Hampshire Agricultural Experiment Station, College of Life Sciences and Agriculture, University of New Hampshire, Durham, New Hampshire

    Stripping experiments in carbon foils with heavy ions in the energy range of 0.4-0.9 mev/a

    No full text
    We studied the properties of heavy ions stripped by carbon foils. Ni, I and Au ions of 0.4 - 0.9 MeV/A were used to bombard foils of 5 - 200 μg/cm 2. In these measurements the ions were detected in a Browne-Buechner spectrometer. We measured the angular straggling of the ions and the energy straggling. We looked for the behaviour of the foils under impact of large beam densities (several μAp/cm2 on an area of 1-2 mm2). We observed the thickness variations of the foils during bombardment in a vacuum of ∼ 10-6 and 10-7 torr. We looked for the evolution of the energy straggling during exposure and conclude that this parameter does not change in an important way. This means that neither thickening nor sputtering affects the homogeneity of the foil. Results on the lifetime of the bombarded foils are reported
    corecore