32 research outputs found

    Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies

    Get PDF
    The epilepsies affect around 65 million people worldwide and have a substantial missing heritability component. We report a genome-wide mega-analysis involving 15,212 individuals with epilepsy and 29,677 controls, which reveals 16 genome-wide significant loci, of which 11 are novel. Using various prioritization criteria, we pinpoint the 21 most likely epilepsy genes at these loci, with the majority in genetic generalized epilepsies. These genes have diverse biological functions, including coding for ion-channel subunits, transcription factors and a vitamin-B6 metabolism enzyme. Converging evidence shows that the common variants associated with epilepsy play a role in epigenetic regulation of gene expression in the brain. The results show an enrichment for monogenic epilepsy genes as well as known targets of antiepileptic drugs. Using SNP-based heritability analyses we disentangle both the unique and overlapping genetic basis to seven different epilepsy subtypes. Together, these findings provide leads for epilepsy therapies based on underlying pathophysiology

    Genome-wide identification of SNPs and copy number variation in common bean (Phaseolus vulgaris L.) using genotyping-by-sequencing (GBS)

    No full text
    Next-generation sequencing technologies have increased markedly the throughput of genetic studies, allowing the identification of several thousands of SNPs within a single experiment. Even though sequencing cost is rapidly decreasing, the price for whole-genome re-sequencing of a large number of individuals is still costly, especially in plants with a large and highly redundant genome. In recent years, several reduced representation library approaches have been developed for reducing the sequencing cost per individual. Among them, genotyping-by-sequencing (GBS) represents a simple, cost-effective, and highly multiplexed alternative for species with or without an available reference genome. However, this technology requires specific optimization for each species, especially for the restriction enzyme (RE) used. Here we report on the application of GBS in a test experiment with 18 genotypes of wild and domesticated Phaseolus vulgaris. After an in silico digestion with different RE of the P. vulgaris genome reference sequence, we selected CviAII as the most suitable RE for GBS in common bean based on the high frequency and even distribution of restriction sites. A total of 44,875 SNPs, 1940 deletions, and 1693 insertions were identified, with 50 % of the variants located in genic sequences and tagging 11,027 genes. SNP and InDel distributions were positively correlated with gene density across the genome. In addition, we were able to also identify putative copy number variations of genomic segments between different genotypes. In conclusion, GBS with the CviAII enzyme results in thousands of evenly spaced markers and provides a reliable, high-throughput, and cost-effective approach for genotyping both wild and domesticated common beans
    corecore