52 research outputs found

    Deciphering the plasma membrane hallmarks of apoptotic cells: Phosphatidylserine transverse redistribution and calcium entry

    Get PDF
    BACKGROUND: During apoptosis, Ca(2+)-dependent events participate in the regulation of intracellular and morphological changes including phosphatidylserine exposure in the exoplasmic leaflet of the cell plasma membrane. The occurrence of phosphatidylserine at the surface of specialized cells, such as platelets, is also essential for the assembly of the enzyme complexes of the blood coagulation cascade, as demonstrated by hemorrhages in Scott syndrome, an extremely rare genetic deficiency of phosphatidylserine externalization, without other apparent pathophysiologic consequences. We have recently reported a reduced capacitative Ca(2+) entry in Scott cells which may be part of the Scott phenotype. RESULTS: Taking advantage of these mutant lymphoblastoid B cells, we have studied the relationship between this mode of Ca(2+) entry and phosphatidylserine redistribution during apoptosis. Ca(2+) ionophore induced apoptosis in Scott but not in control cells. However, inhibition of store-operated Ca(2+) channels led to caspase-independent DNA fragmentation and decrease of mitochondrial membrane potential in both control and Scott cells. Inhibition of cytochrome P450 also reduced capacitative Ca(2+) entry and induced apoptosis at comparable extents in control and Scott cells. During the apoptotic process, both control and more markedly Scott cells externalized phosphatidylserine, but in the latter, this membrane feature was however dissociated from several other intracellular changes. CONCLUSIONS: The present results suggest that different mechanisms account for phosphatidylserine transmembrane migration in cells undergoing stimulation and programmed death. These observations testify to the plasticity of the plasma membrane remodeling process, allowing normal apoptosis even when less fundamental functions are defective

    Cell Damage at the Origin of Antiphospholipid Antibodies and Their Pathogenic Potential in Recurrent Pregnancy Loss

    Get PDF
    Antiphospholipid antibodies (APA) are associated with thrombosis, thrombocytopenia and fetal loss but they occur in a variety of diseases. Despite many efforts, a correlation between the specificity of particular subgroups of APA and particular clinical situations remains to be established. The antigens at the origin of APA remain to be identified. We discuss here the possible links between cell apoptosis or necrosis, leading to plasma membrane alterations, and the occurrence of APA in response to sustained stimulation. The pathogenic potential of APA is also considered with respect to recurrent pregnancy loss

    Identification of genes involved in Ca(2+ )ionophore A23187-mediated apoptosis and demonstration of a high susceptibility for transcriptional repression of cell cycle genes in B lymphoblasts from a patient with Scott syndrome

    Get PDF
    BACKGROUND: In contrast to other agents able to induce apoptosis of cultured cells, Ca(2+ )ionophore A23187 was shown to elicit direct activation of intracellular signal(s). The phenotype of the cells derived from patients having the hemorrhagic disease Scott syndrome, is associated with an abnormally high proportion of apoptotic cells, both in basal culture medium and upon addition of low ionophore concentrations in long-term cultures. These features are presumably related to the mutation also responsible for the defective procoagulant plasma membrane remodeling. We analyzed the specific transcriptional re-programming induced by A23187 to get insights into the effect of this agent on gene expression and a defective gene regulation in Scott cells. RESULTS: The changes in gene expression upon 48 hours treatment with 200 nM A23187 were measured in Scott B lymphoblasts compared to B lymphoblasts derived from the patient's daughter or unrelated individuals using Affymetrix microarrays. In a similar manner in all of the B cell lines, results showed up-regulation of 55 genes, out of 12,000 represented sequences, involved in various pathways of the cell metabolism. In contrast, a group of 54 down-regulated genes, coding for histones and proteins involved in the cell cycle progression, was more significantly repressed in Scott B lymphoblasts than in the other cell lines. These data correlated with the alterations of the cell cycle phases in treated cells and suggested that the potent effect of A23187 in Scott B lymphoblasts may be the consequence of the underlying molecular defect. CONCLUSION: The data illustrate that the ionophore A23187 exerts its pro-apoptotic effect by promoting a complex pattern of genetic changes. These results also suggest that a subset of genes participating in various steps of the cell cycle progress can be transcriptionally regulated in a coordinated fashion. Furthermore, this research brings a new insight into the defect in cultured Scott B lymphoblasts, leading to hypothesize that a mutated gene plays a role not only in membrane remodeling but also in signal transduction pathway(s) leading to altered transcriptional regulation of cell cycle genes

    Increased levels of circulating microparticles in primary Sjögren's syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity

    Get PDF
    INTRODUCTION: Cell stimulation leads to the shedding of phosphatidylserine (PS)-rich microparticles (MPs). Because autoimmune diseases (AIDs) are characterized by cell activation, we investigated level of circulating MPs as a possible biomarker in primary Sjögren's syndrome (pSS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). METHODS: We measured plasma levels of total, platelet and leukocyte MPs by prothrombinase capture assay and flow cytometry in 43 patients with pSS, 20 with SLE and 24 with RA and in 44 healthy controls (HCs). Secretory phospholipase A2 (sPLA2) activity was assessed by fluorometry. Soluble CD40 ligand (sCD40L) and soluble P-selectin (sCD62P), reflecting platelet activation, were measured by ELISA. RESULTS: Patients with pSS showed increased plasma level of total MPs (mean +/- SEM 8.49 +/- 1.14 nM PS equivalent (Eq), P < 0.0001), as did patients with RA (7.23 +/- 1.05 n PS Eq, P = 0.004) and SLE (7.3 +/- 1.25 nM PS Eq, P = 0.0004), as compared with HCs (4.13 +/- 0.2 nM PS Eq). Patients with AIDs all showed increased level of platelet MPs (P < 0.0001), but only those with pSS showed increased level of leukocyte MPs (P < 0.0001). Results by capture assay and flow cytometry were correlated. In patients with high disease activity according to extra-glandular complications (pSS), DAS28 (RA) or SLEDAI (SLE) compared with low-activity patients, the MP level was only slightly increased in comparison with those having a low disease activity. Platelet MP level was inversely correlated with anti-DNA antibody level in SLE (r = -0.65; P = 0.003) and serum beta2 microglobulin level in pSS (r = -0.37; P < 0.03). The levels of total and platelet MPs were inversely correlated with sPLA2 activity (r = -0.37, P = 0.0007; r = -0.36, P = 0.002, respectively). sCD40L and sCD62P concentrations were significantly higher in pSS than in HC (P </= 0.006). CONCLUSIONS: Plasma MP level is elevated in pSS, as well as in SLE and RA, and could be used as a biomarker reflecting systemic cell activation. Level of leukocyte-derived MPs is increased in pSS only. The MP level is low in case of more severe AID, probably because of high secretory phospholipase A2 (sPLA2) activity, which leads to consumption of MPs. Increase of platelet-derived MPs, sCD40L and sCD62P, highlights platelet activation in pSS

    Circulating Secretory Phospholipase A2 Activity Predicts Recurrent Events in Patients With Severe Acute Coronary Syndromes

    Get PDF
    ObjectivesThe purpose of this study was to determine the prognostic value of circulating secretory phospholipase A2 (sPLA2) activity in patients with acute coronary syndromes (ACS).BackgroundThe plasma level of type IIA sPLA2 is a risk factor for coronary artery disease (CAD) and is associated with adverse outcomes in patients with stable CAD. The prognostic impact of sPLA2 in patients with ACS is unknown.MethodsSecretory phospholipase A2 antigen levels and activity were measured in plasma samples of 446 patients with ACS, obtained at the time of enrollment.ResultsBaseline sPLA2 activity was associated with the risk of death and myocardial infarction (MI). The unadjusted rate of death and MI increased in a stepwise fashion with increasing tertiles of sPLA2 activity (p < 0.0001). The association remained significant in the subgroup of patients who had MI with ST-segment elevation (p = 0.014) and the subgroup of patients who had unstable angina or non–ST-segment elevation MI (p < 0.002). After adjustment for clinical and biological variables, the hazard ratios for the combined end point of death or MI in the third tertile of sPLA2 compared with the first and second tertiles was 3.08 (95% confidence interval, 1.37 to 6.91, p = 0.006).ConclusionsA single measurement of plasma sPLA2 activity at the time of enrollment provides strong independent information to predict recurrent events in patients with ACS
    corecore