242 research outputs found

    Controlling polarization at insulating surfaces: Quasiparticle calculations for molecules adsorbed on insulator films

    No full text
    By means of quasiparticle-energy calculations in the G0W0 approach, we show for the prototypical insulator-semiconductor system NaCl=Ge(001) that polarization effects at the interfaces noticeably affect the excitation spectrum of molecules adsorbed on the surface of the NaCl films. The magnitude of the effect can be controlled by varying the thickness of the film, offering new opportunities for tuning electronic excitations in, e.g., molecular electronics or quantum transport. Polarization effects are visible even for the excitation spectrum of the NaCl films themselves, which has important implications for the interpretation of surface science experiments for the characterization of insulator surfaces

    Impact of metastable defect structures on carrier recombination in solar cells

    Get PDF
    The efficiency of a solar cell is often limited by electron-hole recombination mediated by defect states within the band gap of the photovoltaic (PV) semiconductor. The Shockley-Read-Hall (SRH) model considers a static trap that can successively capture electrons and holes. In reality however, true trap levels vary with both the defect charge state and local structure. Here we consider the role of metastable structural configurations in capturing electrons and holes, taking the tellurium interstitial in CdTe as an illustrative example. Consideration of the defect dynamics, and symmetry-breaking, changes the qualitative behaviour and activates new pathways for carrier capture. Our results reveal the potential importance of metastable defect structures in non-radiative recombination, in particular for semiconductors with anharmonic/ionic-covalent bonding, multinary compositions, low crystal symmetries or highly-mobile defects

    Generalized dipole correction for charged surfaces in the repeated-slab approach

    No full text
    First-principles calculations of surfaces or two-dimensional materials with a finite surface charge invariably include an implicit or explicit compensating countercharge. We show that an ideal constant-charge counterelectrode in the vacuum region can be introduced by means of a simple correction to the electrostatic potential in close analogy to the well-known dipole correction for charge-neutral asymmetric slabs. Our generalized dipole correction accounts simultaneously for the sheet-charge electrode and the huge voltage built up between the system of interest and the counterelectrode. We demonstrate its usefulness for two prototypical cases, namely, field evaporation in the presence of huge electric fields (20 V/nm) and the modeling of charged defects at an insulator surface. We also introduce algorithmic improvements to charge initialization and preconditioning in the density functional theory algorithm that proved crucial for ensuring rapid convergence in slab systems with high electric fields

    Segmentation of Static and Dynamic Atomic-Resolution Microscopy Data Sets with Unsupervised Machine Learning Using Local Symmetry Descriptors

    Get PDF
    We present an unsupervised machine learning approach for segmentation of static and dynamic atomic-resolution microscopy data sets in the form of images and video sequences. In our approach, we first extract local features via symmetry operations. Subsequent dimension reduction and clustering analysis are performed in feature space to assign pattern labels to each pixel. Furthermore, we propose the stride and upsampling scheme as well as separability analysis to speed up the segmentation process of image sequences. We apply our approach to static atomic-resolution scanning transmission electron microscopy images and video sequences. Our code is released as a python module that can be used as a standalone program or as a plugin to other microscopy packages. Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

    Dielectric properties of nano-confined water: a canonical thermopotentiostat approach

    Get PDF
    We introduce a novel approach to sample the canonical ensemble at constant temperature and applied electric potential. Our approach can be straightforwardly implemented into any density-functional theory code. Using thermopotentiostat molecular dynamics simulations allows us to compute the dielectric constant of nano-confined water without any assumptions for the dielectric volume. Compared to the commonly used approach of calculating dielectric properties from polarization fluctuations, our thermopotentiostat technique reduces the required computational time by two orders of magnitude

    Specification of an extensible and portable file format for electronic structure and crystallographic data

    Full text link
    In order to allow different software applications, in constant evolution, to interact and exchange data, flexible file formats are needed. A file format specification for different types of content has been elaborated to allow communication of data for the software developed within the European Network of Excellence "NANOQUANTA", focusing on first-principles calculations of materials and nanosystems. It might be used by other software as well, and is described here in detail. The format relies on the NetCDF binary input/output library, already used in many different scientific communities, that provides flexibility as well as portability accross languages and platforms. Thanks to NetCDF, the content can be accessed by keywords, ensuring the file format is extensible and backward compatible

    Status and Direction of Atom Probe Analysis of Frozen Liquids

    Get PDF
    Imaging of liquids and cryogenic biological materials by electron microscopy has been recently enabled by innovative approaches for specimen preparation and the fast development of optimised instruments for cryo-enabled electron microscopy (cryo-EM). Yet, Cryo-EM typically lacks advanced analytical capabilities, in particular for light elements. With the development of protocols for frozen wet specimen preparation, atom probe tomography (APT) could advantageously complement insights gained by cryo-EM. Here, we report on different approaches that have been recently proposed to enable the analysis of relatively large volumes of frozen liquids from either a flat substrate or the fractured surface of a wire. Both allowed for analysing water ice layers which are several microns thick consisting of pure water, pure heavy-water and aqueous solutions. We discuss the merits of both approaches, and prospects for further developments in this area. Preliminary results raise numerous questions, in part concerning the physics underpinning field evaporation. We discuss these aspects and lay out some of the challenges regarding the APT analysis of frozen liquids.Comment: submitted for publication assocaited to the APT&M 2020 conferenc

    Quasiparticle bandgap engineering of graphene and graphone on hexagonal boron nitride substrate

    Full text link
    Graphene holds great promise for post-silicon electronics, however, it faces two main challenges: opening up a bandgap and finding a suitable substrate material. In principle, graphene on hexagonal boron nitride (hBN) substrate provides potential system to overcome these challenges. Recent theoretical and experimental studies have provided conflicting results: while theoretical studies suggested a possibility of a finite bandgap of graphene on hBN, recent experimental studies find no bandgap. Using the first-principles density functional method and the many-body perturbation theory, we have studied graphene on hBN substrate. A Bernal stacked graphene on hBN has a bandgap on the order of 0.1 eV, which disappears when graphene is misaligned with respect to hBN. The latter is the likely scenario in realistic devices. In contrast, if graphene supported on hBN is hydrogenated, the resulting system (graphone) exhibits bandgaps larger than 2.5 eV. While the bandgap opening in graphene/hBN is due to symmetry breaking and is vulnerable to slight perturbation such as misalignment, the graphone bandgap is due to chemical functionalization and is robust in the presence of misalignment. The bandgap of graphone reduces by about 1 eV when it is supported on hBN due to the polarization effects at the graphone/hBN interface. The band offsets at graphone/hBN interface indicate that hBN can be used not only as a substrate but also as a dielectric in the field effect devices employing graphone as a channel material. Our study could open up new way of bandgap engineering in graphene based nanostructures.Comment: 8 pages, 4 figures; Nano Letters, Publication Date (Web): Oct. 25 2011, http://pubs.acs.org/doi/abs/10.1021/nl202725

    Quantum computing with defects

    Full text link
    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV-1) center stands out for its robustness - its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV-1 center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally-coordinated semiconductors.Comment: 31 pages, 7 figures, 2 table
    corecore