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Dielectric Properties of Nanoconfined Water: A Canonical Thermopotentiostat Approach
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We introduce a novel approach to sample the canonical ensemble at constant temperature and applied
electric potential. Our approach can be straightforwardly implemented into any density-functional theory
code. Using thermopotentiostat molecular dynamics simulations allows us to compute the dielectric
constant of nanoconfined water without any assumptions for the dielectric volume. Compared to the
commonly used approach of calculating dielectric properties from polarization fluctuations, our
thermopotentiostat technique reduces the required computational time by 2 orders of magnitude.
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Molecular dynamics (MD) has become an indispensable
tool to efficiently simulate the behavior of a wide range of
systems. Experiments, however, are often performed using
basic thermodynamic variables that are different from the
ones easily accessible in simulations. The need for constant
temperature as opposed to the much simpler constant
energy simulations is widely recognized as one of the
most important examples of this kind. Consequently,
significant effort has been directed at developing thermo-
stats [1-12] with the dual purpose of (i) efficiently sam-
pling the canonical ensemble and (ii) enabling direct
control of the temperature. With the advent of robust
techniques to apply electric fields in density-functional
calculations [13-28], there has been continuous interest to
use MD simulations to study electrically triggered proc-
esses involving electron transfer reactions, such as electro-
chemical reactions, field desorption, and quantum
transport. For this purpose, it is necessary to conceive a
potentiostat, in analogy to the theory of thermostats, in
order to incorporate the electric potential as a thermody-
namic degree of freedom.

The first approach of this kind was pioneered by Bonnet
et al. [19]. They chose a computational setup that is grand-
canonical with respect to the electronic charge, cf. Fig. 1(a).
The system is then coupled to an external potentiostat,
where the charge is treated as an extended spatial coor-
dinate. Analogous to how the mechanical momenta are
obtained from the derivatives of the Hamiltonian with
respect to the spatial coordinates, a fictitious momentum of
the charge is obtained from the derivative of the total energy
with respect to the charge. This fictitious momentum is then
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coupled to standard Nose-Hoover dynamics. The grand-
canonical nature of their setup led Bonnet er al. to
recognize that “[...] in its present formulation, a require-
ment for implementing the potentiostat scheme is the
existence of an energy function &(r;, n,) that is differ-
entiable with respect to the total electronic charge. This
implies the ability to treat non-integer numbers of electrons
and, in general, non-neutral systems.” [19]. Unfortunately,
in the context of density-functional calculations the total
energy as a function of the number of electrons is a
notoriously difficult quantity to compute. Furthermore,
the electronic charge is a single degree of freedom. Yet,
thermostating single degrees of freedom by the
Nose-Hoover method requires a chain of Nose-Hoover
thermostats [6]. Both requirements are serious obstacles
in implementing this potentiostat concept in existing
density-functional theory (DFT) codes. In fact, none
of the commonly used DFT codes [29] has a
potentiostat scheme that provides the opportunity to study

(a) grand-canonical
system

(b) modern theory
of polarization

(c) canonical system
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FIG. 1. Various computational setups used to include the effect
of an applied electric field. (a) The simulation cell contains a
single charged electrode. It is grand canonical and has an excess
charge ne, = n [17,19]. (b) In the modern theory of polarization
(MTP), either the electric field E or the displacement field D is
used as the basic variable [16]. The simulation system is always
charge neutral. (c) The simulation cell contains two electrodes
with charge n and —n. In analogy to the MTP, it is canonical and
charge neutral.
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electrochemical systems with molecular dynamics and
explicit water.

In the present study we show that the origin of these
difficulties lies in the formally equivalent construction of
the potentiostat to a thermostat: existing approaches con-
sider a transfer of energy (thermostat) or charge (potentio-
stat) from the DFT cell to an external reservoir. While such
a grand-canonical coupling can be straightforwardly imple-
mented for an energy exchange, this task is severely harder
for a charge transfer: either non-neutral DFT systems have
to be considered or thermodynamic integration [22]
between DFT systems with different total numbers of
electrons. Moreover, there is also a fundamental difference
between thermostats and potentiostats. For a thermostat, the
system is considered to be embedded in an external
temperature bath. In the physical realization of such a
setup, heat transfer occurs only at the boundaries between
the system and the temperature bath. Therefore, in simu-
lations, it is common to model the simulation cell, the
thermostat, and the energy exchange between them as
separate entities. For a potentiostat, however, the energy
exchange with the voltage source is mediated by the electric
field. Since the electric field permeates the system, energy
exchange occurs throughout the whole system and not just
at the boundaries.

Thus, the electric field plays the same conceptual role for
a potentiostat as the temperature bath for a thermostat. Yet,
the electric field is an integral part of the system. In contrast
to a thermostat where the bath is external, only the control
mechanism of a potentiostat is external, but not the bath.
We therefore propose constructing a potentiostat using the
electric field as the control parameter. As will be derived in
the following, this allows us to remove the need for treating
charged systems. The actual implementation requires only
quantities that are readily accessible in standard DFT codes,
which makes it easy to integrate this potentiostat into
existing electronic structure codes.

We start our derivation from the Hamiltonian given by
Bonnet et al. [19] for the grand-canonical potentiostat
scheme sketched in Fig. 1(a):

H:K(pi)_FV(%"nex :n)_nq)O' (1)

The explicit variables to describe atoms exposed to an
external electric field are the atoms’ positions g¢;, their
momenta p;, and the kinetic energy of the system K(p;).
The single electrode present in the grand-canonical setup
carries a charge n and is included in the simulation cell. A
direct consequence of having a single charged electrode is
that the system is not charge neutral but has an excess
charge n., = n. The potential energy V(g;, n.), which
describes the interatomic interaction, thus explicitly
depends on the (nonzero) excess charge. We note
that the potential energy V(g;,n. =0) is simply the
Born-Oppenheimer surface as computed in any DFT code.

The term —n®, accounts for the potential of the external
charge reservoir. To derive an equation of motion for the
potentiostat from this Hamiltonian requires an explicit
expression for the derivative of the charged system’s energy
V(g;, nex) with respect to the excess charge ng, [19].

A key concept of our proposed approach is to remove the
need to compute V(g;, n.) explicitly. As an intermediate
step to achieve this aim, we consider the system shown in
Fig. 1(b), which is based on concepts of the modern theory
of polarization [13]. Here, the simulation cell contains the
dielectric displacement field D created by moving a charge
n from the left to the right boundary. The charge itself is
outside the simulation cell. The total of the left and the right
charge is zero, i.e., the inner region of the cell remains
charge neutral. Without loss of generality, V can then be
partitioned into the regular interatomic potential energy at
zero excess charge V(g;, n., = 0) and the electric energy
E(g;,n) due to the presence of the D field. The electric
energy Eis given by E = (Q/2¢,)[D — P]? [16], where P is
the polarization density. Thus, the difficult task of calcu-
lating V(g;, ne, = n) for the charged system is substituted
by the much easier calculation of V(g;, ne, = 0) + E(g;, n)
for a corresponding neutral system.

In a final step we extend this idea to a dielectric placed
between two electrodes. The electrodes are connected to a
voltage source with potential difference @, and an internal
resistance R, cf. Fig. 1(c). The corresponding Hamiltonian
is [30]

(n+n,)?

H:K(pi)_FV(Qi’nex :O)+ 2C,

—n®;. (2)

Here, we explicitly include the two electrodes with charge
n and —n that create the displacement field D. Cy, is the bare
capacitance of the electrodes in vacuum without the
dielectric and n, = ®/Cy —n is the polarization bound
charge at the left electrode surface due to the polarization of
the dielectric [36], where @ is the instantaneous voltage
measured directly across the electrodes. Note that the
bound charge n,, is an implicit function of ¢; and n. The
Hamiltonian of the canonical potentiostat [Eq. (2)] allows
us to obtain OH/On analytically [30]:

8_H_n+np
al’l_ CO

—CDO:(I)—q)(). (3)

In the thermodynamic sense, the extensive charge n and the
intensive potential (® — ®,) form a pair of conjugate
variables, playing an analogous role as the volume and
pressure for a barostat [37]. The reason why we are now
able to obtain an analytical expression is that in the
canonical system, n is no longer the net charge ng, of
the system exchanged with an external bath as in the grand-
canonical potentiostat approach. Rather, it is based on a
charge transfer from one electrode to the other that leaves
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the total charge of the system unchanged. Hence, 0H/0n is
determined by the infinitesimal amount of energy OH
required to transfer an infinitesimal amount of charge On
between the electrodes. Thereby, Eq. (3) connects the
derivative OH/0On, which has to be computed for the
microscopic quantum-mechanical system, to an external
macroscopic quantity: the instantaneous voltage ®. Since
our total system is charge neutral, ® is determined directly
by the total dipole moment of the charge distribution within
our simulation cell. This quantity is readily accessible in
DFT codes. In the following, we will use these properties of
Eq. (3) to construct an equation of motion for the voltage @
and, subsequently, for the electrode charge n, the control
parameter of our potentiostat.

A thermostated system evolves under the influence of its
internal, energy-conserving Hamiltonian and extra forces
that drive the exchange of energy with the thermal bath.
Similarly, a potentiostat scheme requires a forcelike term
that drives the necessary changes of the electrode charge to
keep the average potential constant. To obtain this force we
recast Eq. (3) in differential form:

1
d® = —dn, + fd. 4)
Co

fdt = Ciodn. (5)

The first term in Eq. (4) expresses how the potential @ will
evolve under the system’s internal, energy-conserving
Hamiltonian. The second term, fdt, is the extra forcelike
term that couples to the electrode charge. This extra-force
term controls on the one hand the constancy of the
(average) potential. On the other hand, it has to mimic
the statistical fluctuations that occur in a finite system.
These two aspects are balanced by the fluctuation-dissi-
pation theorem [38] and ensure that the system stays in the
NT® ensemble.

Changing the potential of a capacitive system is always a
dissipative process, i.e., only adapting the electrode charge
to control the voltage would drain energy from the system.
To avoid this energy drain, any dissipation must be
accompanied by a corresponding fluctuation that returns
the removed energy. In other words, the applied electric
field itself must have a finite temperature: the energy
dissipated by the potential control mechanism must equal
on average the energy gained from thermal potential
fluctuations. For the electrical circuit shown in Fig. 1(c),
Johnson [39] and Nyquist [40] derived already in 1928 the
relation between fluctuation and dissipation. This relation
is now known as a specific case of the fluctuation-
dissipation theorem (FDT), and determines the variance
of the potential fluctuations as well as its distribution in
frequency space. Using Ohm’s law and Kirchhoff’s 2nd
law, the current through the circuit shown in Fig. 1(c) is

dn = —(® — ®,)R~'dt. In conjunction with the FDT, we
can then express the potentiostat force fdt as a stochastic
differential equation (SDE) [30]:

1 |2 kyT
fdt = ——(® — Dy)dt + [ —2=aw,.  (6)
7o 79 Co
| —

—_———

dissipation fluctuation
7g = RCy and dW, are the relaxation time constant of the
potentiostat and a stochastic noise term given by a Wiener
process, respectively. The deterministic dissipation term in
Eq. (6) is equivalent to Ohm’s law. The stochastic term
provides the thermal fluctuations. Together, they satisfy the
FDT exactly, also in frequency space [30]. Far from
equilibrium, the deterministic part in Eq. (6) dominates
and drives the system towards the target potential with a
relaxation time of 7. Close to the target potential, the
deterministic term becomes small and the stochastic term
takes over to ensure that in thermodynamic equilibrium the
canonical ensemble is correctly sampled.

The SDE Eq. (6) can be solved by employing Itd
calculus [41]. Using this calculus and Eq. (5), Eq. (6)
can be integrated analytically to a finite time step [30]

n(t+ At) = n(t) — Co[@(t) — Dy (1 — e7A1/%)

N\ ks TCo(1 — e2807), (7)

where N is a Gaussian random number with (N) = 0 and
(N?) = 1. Of course numerical integration schemes [42]
are conceivable as well. Equation (7) is the central result of
our derivation: All quantities entering the right side can be
either directly obtained from the DFT calculation or are
known from the specific setup. Thus, the electrode charge n
can be directly computed at each MD time step. This
central result allows us to include the potentiostating
process in any standard discrete time step MD scheme
since the only quantity that needs to be extracted from the
MD is the potential ®(7). The scheme can be used equally
well to perform ab initio or empirical potential MD.

To validate our canonical thermopotentiostat scheme and
to demonstrate its performance we consider a topic that had
recently gained a lot of attention. Recent experiments [43]
showed that a water film confined to a few nm thickness
changes its dielectric behavior from the bulk dielectric
constant of 80 down to 2. Thus, the presence of solid-water
interfaces appears to modify the dielectric response of
water from a highly polarizable medium, which is consid-
ered to be the origin of the unique solvation behavior of
water, down to a response that is close to the vacuum
dielectric constant. Understanding and being able to quali-
tatively describe this mechanism is crucial since interfacial
water is omnipresent.
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Because of the relevance of this question in fields as
diverse as electrochemistry, corrosion, and electrocatalysis,
several computational studies addressed dielectric proper-
ties of nanoconfined water [44-46]. These studies used
either the variance of the total dipole moment fluctuations
per volume, using Kirkwood-Frohlich theory [47], or the
theory of polarization fluctuations [48]. They require as an
input quantity the dielectric volume to compute the
dielectric constant. However, the exact location of the
boundary between the electrode and the dielectric is ill
defined in the presence of adsorbates, thermal motion of the
electrode surface or in the context of explicit electronic
structure calculations. For this reason, past studies often
reported only dipole fluctuations perpendicular to the
electrode surface, but not the dielectric constant €,
itself [44].

Solving this problem requires explicit applied field
techniques, e.g., in the spirit of Ref. [14]. Our thermo-
potentiostat MD allows us to address this issue directly,
since our setup shown in Fig. 1(c) exactly reproduces the
experimental situation. In analogy to experiment, we
compute the static dielectric constant as e, = (C)g, /Co.
The calculation of the capacitances requires only the
averaged charge (n) and potential (®). Thus, similarly
to the experiment, our approach does not require a
definition of the dielectric volume.

We performed classical MD [49] of liquid TIP3P [50]
water confined between two parallel electrodes. Numerical
details are given in the Supplemental Material [30]; test
cases are also presented in Ref. [30], and clearly demon-
strate that our potentiostat alone is not only able to control
the potential, but also the temperature, even in the absence
of an explicit thermostat.

In Fig. 2(a), we compare our calculated static dielectric
constant ¢, as a function of the water layer thickness to the
experimental data from Ref. [43]. Red triangles and
blue squares denote data points obtained from our thermo-
potentiostat MD at @y =1 V and ®; = 4 V, respectively.
Experimental data points measured by Fumagalli et al. [43]
are shown as gray circles. Consistent with the measurements,

—
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—

our results display a pronounced decrease of €| compared to
the static dielectric constant of bulk liquid water ey, that
persists for electrode separations exceeding 100 nm. Based
on this level of agreement, we therefore expect our TIP3P
water model to correctly capture the impact of an interface
on the dielectric properties of water.

In order to understand the origin of the decreasing €|
with decreasing d, we computed the local static dielectric
constant ¢, (z) as a function of the normal distance z to the
electrode surface [30]. Figure 2(b) shows the inverse
dielectric profile €7'(z) for an electrode separation of
d =8 nm. At the position of the electrode surface
z=0, e7' drops sharply and intersects the water bulk
value at ~3 A above the surface. With further increasing z,
7' assumes negative values for interfacial water and then
approaches the bulk water value in an oscillatory fashion.
At a normal distance of ~9 A, the dielectric constant of
bulk liquid water e, is recovered. The behavior in the
~9 A thick interface layer reflects the well-known density
modulations of water close to interfaces [51,52]; cf.
Fig. 2(b) lower part.

We will now test whether the presence of the relatively
thin layer of interfacial water with modified dielectric
properties explains the observed huge decrease of the total
static dielectric constant. Guided by the dielectric profile
shown in Fig. 2(b), we partition the dielectric profile into
three regions: (i) a hydrophobic gap between electrode and
surface with a thickness of dg,, =2 A, (ii) an interfacial
water region consisting of the first two water layers with a
thickness of diz = 5.5 A and (iii) the remaining approx-
imately bulklike region [Fig. 2(b)]. The existence of a
hydrophobic gap, which is clearly visible in our data, was
also suggested by Niu er al. [53] based on spectroscopic
data. The effective dielectric constant of each region is
obtained by integrating over the dielectric profile, yielding
€gap = 1.2 and e = 17.3 for the hydrophobic gap and
interfacial water regions, respectively. We further assume
that each region is approximately independent of d. The
surrogate electrostatic model becomes then a simple plate
capacitor with multiple dielectrics [inset in Fig. 2(a)]. The
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FIG. 2.

normal distance z [A]

(a) e, for TIP3P water as a function of electrode separation d, calculated using the NVT® ensemble. Experimental data

reproduced with permission from Ref. [43]. (b) Local inverse dielectric profile and O/H number density profiles for d = 8 nm. The
number density was computed at @, =2 V. The blue dotted line marks the position of the electrode.
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total dielectric constant is given by the analytical expression
€J_(d) = d/ [2dgap/€gap +2dif/€if + [d_z(dgap +dif)]/€bu]k]'
The solid blue line in Fig. 2(a) denotes ¢ | (d) obtained by the
surrogate model. Although here €, (d) was obtained from a
single explicit calculation for an electrode separation of
d = 8 nm, the solid blue line accurately reproduces all other
data points obtained from explicit thermopotentiostat MD
simulations at different separations d. These findings con-
firm that the local dielectric properties of water close to the
interface are indeed responsible for the observed reduction of
€, compared to €p-

The calculation of dielectric profiles from polarization
fluctuations [48] requires hundreds of nanoseconds of
statistical sampling, in practice enforcing the use of
classical MD. In contrast, the stochastic canonical sampling
of our thermopotentiostat MD in conjunction with finite
electric field techniques turns out to be extremely efficient:
our expression for €, [30] allows us to rely purely on
thermodynamic averages rather than variances. Thus, the
dielectric profiles shown in Fig. 2(b) converged within less
than 4 ns, reducing the required computational time by
more than 2 orders of magnitude.

In conclusion, we devised a novel thermopotentiostat
approach to sample the canonical ensemble at constant
temperature and applied electric potential. Our approach
(i) avoids the need to treat non-neutral simulation cells,
(i1) requires only quantities that can be directly obtained
from density-functional theory simulations and (iii) is
straightforward to implement in any standard ab initio
molecular dynamics package. To demonstrate the perfor-
mance of our approach we computed the thickness-
dependent dielectric properties of nanoconfined water.
We showed that the presence of interfaces strongly modi-
fies the dielectric constant of an interfacial water region.
This region is spatially highly confined with a thickness of
only ~1 nm (roughly two water layers). This thin region
with modified dielectric properties is shown to fully capture
the experimentally observed anisotropic dielectric
response, persisting for distances exceeding 100 nm. The
computational efficiency of our approach is improved by
more than 2 orders of magnitude compared to previous
ones. In conjunction with ab initio MD, we expect our
thermopotentiostat to open the door towards accurate and
efficient simulations of equilibrium properties, such as
interfacial dielectric constants, as well as processes such as
electron transfer and electrochemical reactions.
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