641 research outputs found
First Class Call Stacks: Exploring Head Reduction
Weak-head normalization is inconsistent with functional extensionality in the
call-by-name -calculus. We explore this problem from a new angle via
the conflict between extensionality and effects. Leveraging ideas from work on
the -calculus with control, we derive and justify alternative
operational semantics and a sequence of abstract machines for performing head
reduction. Head reduction avoids the problems with weak-head reduction and
extensionality, while our operational semantics and associated abstract
machines show us how to retain weak-head reduction's ease of implementation.Comment: In Proceedings WoC 2015, arXiv:1606.0583
Homological perturbation theory for nonperturbative integrals
We use the homological perturbation lemma to produce explicit formulas
computing the class in the twisted de Rham complex represented by an arbitrary
polynomial. This is a non-asymptotic version of the method of Feynman diagrams.
In particular, we explain that phenomena usually thought of as particular to
asymptotic integrals in fact also occur exactly: integrals of the type
appearing in quantum field theory can be reduced in a totally algebraic fashion
to integrals over an Euler--Lagrange locus, provided this locus is understood
in the scheme-theoretic sense, so that imaginary critical points and
multiplicities of degenerate critical points contribute.Comment: 22 pages. Minor revisions from previous versio
Sound and complete axiomatizations of coalgebraic language equivalence
Coalgebras provide a uniform framework to study dynamical systems, including
several types of automata. In this paper, we make use of the coalgebraic view
on systems to investigate, in a uniform way, under which conditions calculi
that are sound and complete with respect to behavioral equivalence can be
extended to a coarser coalgebraic language equivalence, which arises from a
generalised powerset construction that determinises coalgebras. We show that
soundness and completeness are established by proving that expressions modulo
axioms of a calculus form the rational fixpoint of the given type functor. Our
main result is that the rational fixpoint of the functor , where is a
monad describing the branching of the systems (e.g. non-determinism, weights,
probability etc.), has as a quotient the rational fixpoint of the
"determinised" type functor , a lifting of to the category of
-algebras. We apply our framework to the concrete example of weighted
automata, for which we present a new sound and complete calculus for weighted
language equivalence. As a special case, we obtain non-deterministic automata,
where we recover Rabinovich's sound and complete calculus for language
equivalence.Comment: Corrected version of published journal articl
Post Quantum Cryptography from Mutant Prime Knots
By resorting to basic features of topological knot theory we propose a
(classical) cryptographic protocol based on the `difficulty' of decomposing
complex knots generated as connected sums of prime knots and their mutants. The
scheme combines an asymmetric public key protocol with symmetric private ones
and is intrinsecally secure against quantum eavesdropper attacks.Comment: 14 pages, 5 figure
Four problems regarding representable functors
Let , be two rings, an -coring and the
category of left -comodules. The category of all representable functors is shown to be equivalent to the opposite of the
category . For an -bimodule we give
necessary and sufficient conditions for the induction functor to be: a representable functor, an
equivalence of categories, a separable or a Frobenius functor. The latter
results generalize and unify the classical theorems of Morita for categories of
modules over rings and the more recent theorems obtained by Brezinski,
Caenepeel et al. for categories of comodules over corings.Comment: 16 pages, the second versio
Covers of acts over monoids II
In 1981 Edgar Enochs conjectured that every module has a flat cover and
finally proved this in 2001. Since then a great deal of effort has been spent
on studying different types of covers, for example injective and torsion free
covers. In 2008, Mahmoudi and Renshaw initiated the study of flat covers of
acts over monoids but their definition of cover was slightly different from
that of Enochs. Recently, Bailey and Renshaw produced some preliminary results
on the `other' type of cover and it is this work that is extended in this
paper. We consider free, divisible, torsion free and injective covers and
demonstrate that in some cases the results are quite different from the module
case
Khovanov-Rozansky Homology and Topological Strings
We conjecture a relation between the sl(N) knot homology, recently introduced
by Khovanov and Rozansky, and the spectrum of BPS states captured by open
topological strings. This conjecture leads to new regularities among the sl(N)
knot homology groups and suggests that they can be interpreted directly in
topological string theory. We use this approach in various examples to predict
the sl(N) knot homology groups for all values of N. We verify that our
predictions pass some non-trivial checks.Comment: 25 pages, 2 figures, harvmac; minor corrections, references adde
Characterizing Van Kampen Squares via Descent Data
Categories in which cocones satisfy certain exactness conditions w.r.t.
pullbacks are subject to current research activities in theoretical computer
science. Usually, exactness is expressed in terms of properties of the pullback
functor associated with the cocone. Even in the case of non-exactness,
researchers in model semantics and rewriting theory inquire an elementary
characterization of the image of this functor. In this paper we will
investigate this question in the special case where the cocone is a cospan,
i.e. part of a Van Kampen square. The use of Descent Data as the dominant
categorical tool yields two main results: A simple condition which
characterizes the reachable part of the above mentioned functor in terms of
liftings of involved equivalence relations and (as a consequence) a necessary
and sufficient condition for a pushout to be a Van Kampen square formulated in
a purely algebraic manner.Comment: In Proceedings ACCAT 2012, arXiv:1208.430
The effect of discrete vs. continuous-valued ratings on reputation and ranking systems
When users rate objects, a sophisticated algorithm that takes into account
ability or reputation may produce a fairer or more accurate aggregation of
ratings than the straightforward arithmetic average. Recently a number of
authors have proposed different co-determination algorithms where estimates of
user and object reputation are refined iteratively together, permitting
accurate measures of both to be derived directly from the rating data. However,
simulations demonstrating these methods' efficacy assumed a continuum of rating
values, consistent with typical physical modelling practice, whereas in most
actual rating systems only a limited range of discrete values (such as a 5-star
system) is employed. We perform a comparative test of several co-determination
algorithms with different scales of discrete ratings and show that this
seemingly minor modification in fact has a significant impact on algorithms'
performance. Paradoxically, where rating resolution is low, increased noise in
users' ratings may even improve the overall performance of the system.Comment: 6 pages, 2 figure
- …
