2,758 research outputs found

    Force-Velocity Relations of a Two-State Crossbridge Model for Molecular Motors

    Full text link
    We discuss the force-velocity relations obtained in a two-state crossbridge model for molecular motors. They can be calculated analytically in two limiting cases: for a large number and for one pair of motors. The effect of the strain-dependent detachment rate on the motor characteristics is studied. It can lead to linear, myosin-like, kinesin-like and anomalous curves. In particular, we specify the conditions under which oscillatory behavior may be found.Comment: 5 pages, 4 figures, REVTeX; thoroughly revised version; also available at http://www.physik.tu-muenchen.de/~frey

    Traffic jams induced by rare switching events in two-lane transport

    Get PDF
    We investigate a model for driven exclusion processes where internal states are assigned to the particles. The latter account for diverse situations, ranging from spin states in spintronics to parallel lanes in intracellular or vehicular traffic. Introducing a coupling between the internal states by allowing particles to switch from one to another induces an intriguing polarization phenomenon. In a mesoscopic scaling, a rich stationary regime for the density profiles is discovered, with localized domain walls in the density profile of one of the internal states being feasible. We derive the shape of the density profiles as well as resulting phase diagrams analytically by a mean-field approximation and a continuum limit. Continuous as well as discontinuous lines of phase transition emerge, their intersections induce multi-critical behaviour

    Critical dynamics of ballistic and Brownian particles in a heterogeneous environment

    Full text link
    The dynamic properties of a classical tracer particle in a random, disordered medium are investigated close to the localization transition. For Lorentz models obeying Newtonian and diffusive motion at the microscale, we have performed large-scale computer simulations, demonstrating that universality holds at long times in the immediate vicinity of the transition. The scaling function describing the crossover from anomalous transport to diffusive motion is found to vary extremely slowly and spans at least 5 decades in time. To extract the scaling function, one has to allow for the leading universal corrections to scaling. Our findings suggest that apparent power laws with varying exponents generically occur and dominate experimentally accessible time windows as soon as the heterogeneities cover a decade in length scale. We extract the divergent length scales, quantify the spatial heterogeneities in terms of the non-Gaussian parameter, and corroborate our results by a thorough finite-size analysis.Comment: 14 page

    Pair distribution function and structure factor of spherical particles

    Full text link
    The availability of neutron spallation-source instruments that provide total scattering powder diffraction has led to an increased application of real-space structure analysis using the pair distribution function. Currently, the analytical treatment of finite size effects within pair distribution refinement procedures is limited. To that end, an envelope function is derived which transforms the pair distribution function of an infinite solid into that of a spherical particle with the same crystal structure. Distributions of particle sizes are then considered, and the associated envelope function is used to predict the particle size distribution of an experimental sample of gold nanoparticles from its pair distribution function alone. Finally, complementing the wealth of existing diffraction analysis, the peak broadening for the structure factor of spherical particles, expressed as a convolution derived from the envelope functions, is calculated exactly for all particle size distributions considered, and peak maxima, offsets, and asymmetries are discussed.Comment: 7 pages, 6 figure

    NCLB technology and a rural school: A case study

    Get PDF
    The requirements of the No Child Left Behind Act of 2001 (NCLB) have presented special challenges and opportunities for rural schools (Reeves, 2003). Researchers have suggested that one way rural schools may be able to overcome these challenges is through an increase in the level of technology integration in their school (Collins & Dewees, 2001). This case study reports on one school’s attempt to use grant resources funded through NCLB to integrate specific instructional technologies to facilitate increased student achievement. Through interviews and observations, the roles, attitudes, and difficulties of teachers and administrators in implementing a technology initiative in a rural middle school were observed, examined and discussed. Emerging themes included issues related to teacher ownership of the technology, teacher feelings of power and participation, differing goals of teachers and administrators, technical difficulties, school wide support, and changes in school culture

    NCLB Technology and a Rural School: A Case Study

    Get PDF
    The requirements of the No Child Left Behind Act of 2001 (NCLB) have presented special challenges and opportunities for rural schools (Reeves, 2003). Researchers have suggested that one way rural schools may be able to overcome these challenges is through an increase in the level of technology integration in their school (Collins & Dewees, 2001). This case study reports on one school’s attempt to use grant resources funded through NCLB to integrate specific instructional technologies to facilitate increased student achievement. Through interviews and observations, the roles, attitudes, and difficulties of teachers and administrators in implementing a technology initiative in a rural middle school were observed, examined and discussed. Emerging themes included issues related to teacher ownership of the technology, teacher feelings of power and participation, differing goals of teachers and administrators, technical difficulties, school wide support, and changes in school culture

    Renewal processes and fluctuation analysis of molecular motor stepping

    Get PDF
    We model the dynamics of a processive or rotary molecular motor using a renewal processes, in line with the work initiated by Svoboda, Mitra and Block. We apply a functional technique to compute different types of multiple-time correlation functions of the renewal process, which have applications to bead-assay experiments performed both with processive molecular motors, such as myosin V and kinesin, and rotary motors, such as F1-ATPase

    Critically ill COVID-19 patients with neutralizing autoantibodies against type I interferons have increased risk of herpesvirus disease

    Full text link
    Autoantibodies neutralizing the antiviral action of type I interferons (IFNs) have been associated with predisposition to severe Coronavirus Disease 2019 (COVID-19). Here, we screened for such autoantibodies in 103 critically ill COVID-19 patients in a tertiary intensive care unit (ICU) in Switzerland. Eleven patients (10.7%), but no healthy donors, had neutralizing anti-IFNα or anti-IFNα/anti-IFNω IgG in plasma/serum, but anti-IFN IgM or IgA was rare. One patient had non-neutralizing anti-IFNα IgG. Strikingly, all patients with plasma anti-IFNα IgG also had anti-IFNα IgG in tracheobronchial secretions, identifying these autoantibodies at anatomical sites relevant for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Longitudinal analyses revealed patient heterogeneity in terms of increasing, decreasing, or stable anti-IFN IgG levels throughout the length of hospitalization. Notably, presence of anti-IFN autoantibodies in this critically ill COVID-19 cohort appeared to predict herpesvirus disease (caused by herpes simplex viruses types 1 and 2 (HSV-1/-2) and/or cytomegalovirus (CMV)), which has been linked to worse clinical outcomes. Indeed, all 7 tested COVID-19 patients with anti-IFN IgG in our cohort (100%) suffered from one or more herpesviruses, and analysis revealed that these patients were more likely to experience CMV than COVID-19 patients without anti-IFN autoantibodies, even when adjusting for age, gender, and systemic steroid treatment (odds ratio (OR) 7.28, 95% confidence interval (CI) 1.14 to 46.31, p = 0.036). As the IFN system deficiency caused by neutralizing anti-IFN autoantibodies likely directly and indirectly exacerbates the likelihood of latent herpesvirus reactivations in critically ill patients, early diagnosis of anti-IFN IgG could be rapidly used to inform risk-group stratification and treatment options. Trial Registration: ClinicalTrials.gov Identifier: NCT04410263

    Nominal or Real? The Impact of Regional Price Levels on Satisfaction with Life

    Get PDF
    According to economic theory, real income, i.e., nominal income adjusted for purchasing power, should be the relevant source of life satisfaction. Previous work, however, has only studied the impact of inflation adjusted nominal income and not taken into account regional differences in purchasing power. Therefore, we use a novel data set to study how regional price levels affect satisfaction with life. The data set comprises about 7 million data points that are used to construct a price level for each of the 428 administrative districts in Germany. We estimate pooled OLS and ordered probit models that include a comprehensive set of individual level, time-varying and time-invariant control variables as well as control variables that capture district heterogeneity other than the price level. Our results show that higher price levels significantly reduce life satisfaction. Furthermore, we find that a higher price level tends to induce a larger loss in life satisfaction than a corresponding decrease in nominal income. A formal test of neutrality of money, however, does not reject neutrality of money. Our results provide an argument in favor of regional indexation of government transfer payments such as social welfare benefits

    An X-ray jet discovered by Chandra in the z=4.3 radio-selected quasar GB 1508+5714

    Full text link
    We report the Chandra discovery of an X-ray jet associated with the redshift 4.3 radio-loud quasar GB 1508+5714. The jet X-ray emission peaks ~2 arcsec to the South-West of the quasar core. We present archival HST WFPC2 data of the quasar field which shows no optical emission at the location of the X-ray jet. We discuss possible emission mechanisms and give constraints to the magnetic field and energy densities for synchrotron radiation or for Compton scattering of the Cosmic Microwave Background radiation as the jet X-ray emission process.Comment: 5 pages, 4 figures, submitted to ApJ. Letters on Aug.13, accepted for publication in ApJ Letters on Oct.
    corecore