15,881 research outputs found

    Injuries to Infants En Ventre Sa Mere

    Get PDF

    We Must Improve Our Justice of the Peace Courts

    Get PDF

    Current reversal and exclusion processes with history-dependent random walks

    Get PDF
    A class of exclusion processes in which particles perform history-dependent random walks is introduced, stimulated by dynamic phenomena in some biological and artificial systems. The particles locally interact with the underlying substrate by breaking and reforming lattice bonds. We determine the steady-state current on a ring, and find current-reversal as a function of particle density. This phenomenon is attributed to the non-local interaction between the walkers through their trails, which originates from strong correlations between the dynamics of the particles and the lattice. We rationalize our findings within an effective description in terms of quasi-particles which we call front barriers. Our analytical results are complemented by stochastic simulations.Comment: 5 pages, 6 figure

    Stiff Polymers, Foams and Fiber Networks

    Get PDF
    We study the elasticity of fibrous materials composed of generalized stiff polymers. It is shown that in contrast to cellular foam-like structures affine strain fields are generically unstable. Instead, a subtle interplay between the architecture of the network and the elastic properties of its building blocks leads to intriguing mechanical properties with intermediate asymptotic scaling regimes. We present exhaustive numerical studies based on a finite element method complemented by scaling arguments.Comment: 4 pages, 5 figure

    Elasticity of Stiff Polymer Networks

    Full text link
    We study the elasticity of a two-dimensional random network of rigid rods (``Mikado model''). The essential features incorporated into the model are the anisotropic elasticity of the rods and the random geometry of the network. We show that there are three distinct scaling regimes, characterized by two distinct length scales on the elastic backbone. In addition to a critical rigidiy percolation region and a homogeneously elastic regime we find a novel intermediate scaling regime, where elasticity is dominated by bending deformations.Comment: 4 pages, 4 figure

    Validity of the Law of Mass Action in Three-Dimensional Coagulation Processes

    Get PDF
    Diffusion-limited reactions are studied in detail on the classical coalescing process. We demonstrate how, with the aid of a recent renormalization group approach, fluctuations can be integrated systematically. We thereby obtain an exact relation between the microscopic physics (lattice structure and particle shape and size) and the macroscopic decay rate in the law of mass action. Moreover, we find a strong violation of the law of mass action. The corresponding term in the kinetic equations originates in longwavelength fluctuations and is a universal function of the macroscopic decay rate

    Physical limitations to the spatial resolution of solid-state detectors

    Full text link
    In this paper we explore the effect of δ\delta-ray emission, fluctuations in th e signal deposition on the detection of charged particles in silicon-based detec tors. We show that these two effects ultimately limit the resolution that can be achieved by interpolation of the signal in finely segmented position-sensitive solid-state devices.Comment: 5 page

    Filamin cross-linked semiflexible networks: Fragility under strain

    Full text link
    The semiflexible F-actin network of the cytoskeleton is cross-linked by a variety of proteins including filamin, which contain Ig-domains that unfold under applied tension. We examine a simple semiflexible network model cross-linked by such unfolding linkers that captures the main mechanical features of F-actin networks cross-linked by filamin proteins and show that under sufficiently high strain the network spontaneously self-organizes so that an appreciable fraction of the filamin cross-linkers are at the threshold of domain unfolding. We propose an explanation of this organization based on a mean-field model and suggest a qualitative experimental signature of this type of network reorganization under applied strain that may be observable in intracellular microrheology experiments of Crocker et al.Comment: 4 Pages, 3 figures, Revtex4, submitted to PR

    The use of happiness research for public policy

    Get PDF
    Research on happiness tends to follow a "benevolent dictator" approach where politicians pursue people's happiness. This paper takes an antithetic approach based on the insights of public choice theory. First, we inquire how the results of happiness research may be used to improve the choice of institutions. Second, we show that the policy approach matters for the choice of research questions and the kind of knowledge happiness research aims to provide. Third, we emphasize that there is no shortcut to an optimal policy maximizing some happiness indicator or social welfare function since governments have an incentive to manipulate this indicator

    Scaling and universality in coupled driven diffusive models

    Full text link
    Inspired by the physics of magnetohydrodynamics (MHD) a simplified coupled Burgers-like model in one dimension (1d), a generalization of the Burgers model to coupled degrees of freedom, is proposed to describe 1dMHD. In addition to MHD, this model serves as a 1d reduced model for driven binary fluid mixtures. Here we have performed a comprehensive study of the universal properties of the generalized d-dimensional version of the reduced model. We employ both analytical and numerical approaches. In particular, we determine the scaling exponents and the amplitude-ratios of the relevant two-point time-dependent correlation functions in the model. We demonstrate that these quantities vary continuously with the amplitude of the noise cross-correlation. Further our numerical studies corroborate the continuous dependence of long wavelength and long time-scale physics of the model on the amplitude of the noise cross-correlations, as found in our analytical studies. We construct and simulate lattice-gas models of coupled degrees of freedom in 1d, belonging to the universality class of our coupled Burgers-like model, which display similar behavior. We use a variety of numerical (Monte-Carlo and Pseudospectral methods) and analytical (Dynamic Renormalization Group, Self-Consistent Mode-Coupling Theory and Functional Renormalization Group) approaches for our work. The results from our different approaches complement one another. Possible realizations of our results in various nonequilibrium models are discussed.Comment: To appear in JSTAT (2009); 52 pages in JSTAT format. Some figure files have been replace
    • …
    corecore