32,484 research outputs found
Extinction in neutrally stable stochastic Lotka-Volterra models
Populations of competing biological species exhibit a fascinating interplay
between the nonlinear dynamics of evolutionary selection forces and random
fluctuations arising from the stochastic nature of the interactions. The
processes leading to extinction of species, whose understanding is a key
component in the study of evolution and biodiversity, are influenced by both of
these factors.
In this paper, we investigate a class of stochastic population dynamics
models based on generalized Lotka-Volterra systems. In the case of neutral
stability of the underlying deterministic model, the impact of intrinsic noise
on the survival of species is dramatic: it destroys coexistence of interacting
species on a time scale proportional to the population size. We introduce a new
method based on stochastic averaging which allows one to understand this
extinction process quantitatively by reduction to a lower-dimensional effective
dynamics. This is performed analytically for two highly symmetrical models and
can be generalized numerically to more complex situations. The extinction
probability distributions and other quantities of interest we obtain show
excellent agreement with simulations.Comment: 14 pages, 7 figure
Simultaneous message framing and error detection
Circuitry simultaneously inserts message framing information and detects noise errors in binary code data transmissions. Separate message groups are framed without requiring both framing bits and error-checking bits, and predetermined message sequence are separated from other message sequences without being hampered by intervening noise
Long-range and many-body effects in coagulation processes
We study the problem of diffusing particles which coalesce upon contact. With the aid of a nonperturbative renormalization group, we first analyze the dynamics emerging below the critical dimension two, where strong fluctuations imply anomalously slow decay. Above two dimensions, the long-time, low-density behavior is known to conform with the law of mass action. For this case, we establish an exact mapping between the physics at the microscopic scale (lattice structure, particle shape and size) and the macroscopic decay rate in the law of mass action. In addition, we identify a term violating this classical law. It originates in long-range and many-particle fluctuations and is a simple, universal function of the macroscopic decay rate. DOI: 10.1103/PhysRevE.87.02213
Phase perturbation measurements through a heated ionosphere
High frequency radiowaves incident on an overdense (i.e., HF-frequency penetration frequency) ionosphere produce electron density irregularities. The effect of such ionospheric irregularities on the phase of UHF-radiowaves was determined. For that purpose the phase of radiowaves originating from celestial radio sources was observed with two antennas. The radiosources were chosen such that the line of sight to at least one of the antennas (usually both) passed through the modified volume of the ionosphere. Observations at 430 MHz and at 2380 MHz indicate that natural irregularities have a much stronger effect on the UHF phase fluctuations than the HF-induced irregularities for presently achieved HF-power densities of 20-80 uW/sq m. It is not clear whether some of the effects observed are the result of HF-modification of the ionosphere. Upper limits on the phase perturbations produced by HF-modification are 10 deg at 2380 MHz and 80 deg at 430 MHz
Understanding Collective Dynamics of Soft Active Colloids by Binary Scattering
Collective motion in actively propelled particle systems is triggered on the
very local scale by nucleation of coherently moving units consisting of just a
handful of particles. These units grow and merge over time, ending up in a
long-range ordered, coherently-moving state. So far, there exists no bottom-up
understanding of how the microscopic dynamics and interactions between the
constituents are related to the system's ordering instability. In this paper,
we study a class of models for propelled colloids allowing an explicit
treatment of the microscopic details of the collision process. Specifically,
the model equations are Newtonian equations of motion with separate force terms
for particles' driving, dissipation and interaction forces. Focusing on dilute
particle systems, we analyze the binary scattering behavior for these models,
and determine-based on the microscopic dynamics-the corresponding
collision-rule, i.e., the mapping of pre-collisional velocities and impact
parameter on post-collisional velocities. By studying binary scattering we also
find that the considered models for active colloids share the same principle
for parallel alignment: the first incoming particle (with respect to the center
of collision) is aligned to the second particle as a result of the encounter.
This behavior is distinctively different to alignment in non-driven dissipative
gases. Moreover, the obtained collision rule lends itself as a starting point
to apply kinetic theory for propelled particle systems in order to determine
the phase boundary to a long-range ordered, coherently-moving state. The
microscopic origin of the collision rule offers the opportunity to
quantitatively scrutinize the predictions of kinetic theory for propelled
particle systems through direct comparison with multi-particle simulations.Comment: 19 pages, 12 figure
The Martian crustal dichotomy: Product of accretion and not a specific event?
Attempts to explain the fundamental crustal dichotomy on Mars range from purely endogenic to extreme exogenic processes, but to date no satisfactory theory has evolved. What is accepted is: (1) the dichotomy is an ancient feature of the Martian crust, and (2) the boundary between the cratered highlands and northern plains which marks the dichotomy in parts of Mars has undergone significant and variable modification during the observable parts of Martian history. Some ascribe it to a single mega-impact event, essentially an instantaneous rearrangement of the crustal structures (topography and lithospheric thickness). Others prefer an internal mechanism: a period of vigorous convection subcrustally erodes the northern one third of Mars, causing foundering and isostatic lowering of that part of Mars. The evidence for each theory is reviewed, with the conclusion that there is little to recommend either. An alternative is suggested: the formation of the crustal dichotomy on Mars was not a specific tectonic event but a byproduct of the accretionary process and therefore a primordial characteristic of the Martian crust, predating the oldest recognizable landforms
MEVTV study: Early tectonic evolution of Mars: Crustal dichotomy to Valles Marineris
Several fundamental problems were addressed in the early impact, tectonic, and volcanic evolution of the martian lithosphere: (1) origin and evolution of the fundamental crustal dichotomy, including development of the highland/lowland transition zone; (2) growth and evolution of the Valles Marineris; and (3) nature and role of major resurfacing events in early martian history. The results in these areas are briefly summarized
The use of happiness research for public policy
Research on happiness tends to follow a "benevolent dictator" approach where politicians pursue people's happiness. This paper takes an antithetic approach based on the insights of public choice theory. First, we inquire how the results of happiness research may be used to improve the choice of institutions. Second, we show that the policy approach matters for the choice of research questions and the kind of knowledge happiness research aims to provide. Third, we emphasize that there is no shortcut to an optimal policy maximizing some happiness indicator or social welfare function since governments have an incentive to manipulate this indicator
- …
