88 research outputs found

    Effect of grazing white clover pasture on milk composition of Holstein and Jersey cows

    Get PDF
    Because of its high saturated fatty acid (FA) content milk fat is considered hypercholesterolemic. Intake of unsaturated FA (UFA) reduces the plasma cholesterol concentrations. Especially conjugated linoleic acids (CLA) have shown positive effects on cardiovascular diseases, prevention of cancer and obesity. The aim of our project is to investigate how grazing can enhance the content of these beneficiary FA in milk. For bith types of cow races we observed no direct effect of increased grazing in the diet on the short chain FA (SCFA) content in milk, implying that the de novo synthesis of these FA remained unaffected. Regarding the content of CLA c9,t11 there was a strong positive effect on Holstein milk (R2 = 0,88), but almost none on Jersey milk when the percentage of grazing increases in the diet, thus suggesting that the mammary gland D9-desaturase acitivities of these two cow races react differently to increasing pasture grazing

    Content of fatty acids, vitamin E and carotenoids in milk and herbage as affected by sward composition and period of grazing

    Get PDF
    The quality of organic milk is affected by feed composition, and especially the high use of legumes has been identified as the reason for high levels of polyunsaturated fatty acids, carotenoids and tocopherols in organic milk. Four different pastures composed of mainly white clover (WCL), red clover (RCL), lucerne (LUC) or chicory (CIK), respectively, were established to investigate the influence of sward composition on the milk quality of grazing cows. On three occasions during the grazing period (May, June and August), groups of 12 Holstein cows were grazing the pastures for two weeks. About 70% of the daily dry matter intake was pasture, and the remaining dry matter intake was a mixture of oats, hay and minerals (82%, 16%, 2%, respectively). The swards were sampled, and their feed quality as well as their composition of carotenoids, tocopherols and fatty acids was analysed. On each occasion, milk was sampled after two weeks of grazing, and the content of tocopherols and carotenoids as well as the composition of fatty acids was analysed. The overall feed quality expressed as IVOMD (in vitro organic matter disappearance) and NDF (neutral detergent fibre) was affected by period and to a lesser extent by forage type. The content of carotenoids was higher in RCL compared to the other forages, while no effect of period was observed. Alpha-tocopherol was neither affected by period nor by forage type. Fatty acid content, in particular content of linolenic acid, decreased during the grazing period, and it was highest in RCL, intermediate in CIK and lowest in WCL and LUC. Milk yield was neither affected by period nor by forage type. Milk fatty acid composition and content of alpha-tocopherol and carotenoids showed minor differences between forage types and sampling occasions. However, multivariate analysis of these data showed grouping according to sampling occasion, but no clear grouping according to forage types. Despite the differences in composition of forage and in composition of milk, it was not possible to predict milk content of specific fatty acids, carotenoids or tocopherols from the feed content of these compounds. This was partly explained by differences in feed digestibility. Comparison of the milk with previous studies showed higher concentrations of beneficiary compounds such as linolenic acid (12 mg/g fatty acids), conjugated linoleic acid (13 mg/g fatty acids), carotenoids (6 µg/g milk fat) and alpha-tocopherol (21 µg/g milk fat), and it was concluded that all the forages tested could be used in production of a milk with such properties

    Sensory quality of organic milk based on grazing and high ratio of legumes in the feeding ration

    Get PDF
    Organic milk forms an important segment of the fresh milk production in Denmark. However, studies are needed to substantiate the high quality and future development of new variations of organic milk for different consumers. Differences in the composition of organically and conventionally produced milk (free fatty acids and a higher content of antioxidants in organic milk) are suggested to be a result of differences in feeding regimes (maize components in conventional production vs. grass and legumes in organic production). Also, milk from dairy cows fed grass silage has a different flavour compared to milk from dairy cows fed maize silage. This study evaluated the sensory properties of organic milk from dairy cows from different feeding trials. The effect of four different legumes and herbs, lucerne (Medicargo sativa), red clover (Trifolium pratense), white clover (Trifolium repens) and chicory (Cichorium intybus), was studied following a schedule including 4*12 Holstein Frisian cows. Descriptive sensory analysis was performed on the fresh pasteurized unhomogenized full-fat milk (6 replicates in 2 sessions) with a trained panel of 10 assessors. The preliminary results from the descriptive analysis of summer feeding (grazing) and winter feeding (silage) show that feeding with legumes and grass affects the sensory quality of full-fat unhomogenized organic milk. The most distinct milk was obtained from feeding ration high in chicory. This milk was characterized by a bitter and metallic taste and an astringent aftertaste both from the summer grazing and winter silage feeding trials. Red clover was characterized by a boiled milk flavour (summer), lucerne by a fatty aftertaste (winter) and white clover by a sweet and creamy flavour (winter). The results of the first season, which will also include relations between the sensory quality and the milk composition, serve as important inputs for the extensive studies to be conducted during the next three seasons. These studies include farm studies and consumer studies (product information, preference and purchase motives)

    Græsmarksafgrødernes sammensætning – en kompleks sag

    Get PDF
    Ønsker man at producere mælk med en given sammensætning, er det vigtigt både at fokusere på anvendelsen af forskellige græssorter samt at have fokus på planternes udviklingstrin

    Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in <i>Lactuca sativa</i>

    Get PDF
    To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. ’Batavia’ (green) and cv. ‘Lollo Rossa’ (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) µmol m-2 s-1 for up to 20 hr, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 µmol m-2 s-1 from 06:00 to 08:00), 1B 21-08 (Blue light at 45 µmol m-2 s-1 from 21:00 to 08:00), 2B 17-19 (Blue at 80 µmol m-2 s-1 from 17:00 to 19:00), and (1B 17-19) Blue at 45 µmol m-2 s-1from 17:00 to 19:00. Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent

    Valuable biomolecules from nine North Atlantic red macroalgae:Amino acids, fatty acids, carotenoids, minerals and metals

    Get PDF
    In modern society, novel marine resources are scrutinized pursuing compounds of use in the medical, pharmaceutical, biotech, food or feed industry. Few of the numerous marine macroalgae are currently exploited. In this study, the contents of nutritional compounds from nine common North Atlantic red macroalgae were compared: the lipid content was low and constant among the species, whereas the fatty acid profiles indicated that these species constitute interesting sources of polyunsaturated fatty acids (PUFA). The dominating essential and non-essential amino acids were lysine and leucine, aspartic acid, glutamic acid, and arginine, respectively. The amino acid score of the nine algae varied from 44% to 92%, the most commonly first limiting amino acid being histidine. Lutein, β-carotene, and zeaxanthin were the identified carotenoids. Contents of all macro and trace minerals, with the exception of phosphorus, were higher than those described for conventional food. Low sodium/potassium ratios (0.08 - 2.54) suggested a potential for using the ash fraction for sodium salt replacement. The algae constituted rich sources of carbohydrates (40% to 71% of DM) which show their potential for a broader commercial exploitation. In some species, the concentrations of arsenic, cadmium, and lead exceeded limit values for application in food or feed. In conclusion, the nine algae represent promising potential sources of health promoting additives for human and animal diets, in whole or in a biorefinery concept
    corecore