8 research outputs found
Unsupervised Classification of PolSAR Data Using a Scattering Similarity Measure Derived From a Geodesic Distance
In this letter, we propose a novel technique for obtaining scattering components from polarimetric synthetic aperture radar (PolSAR) data using the geodesic distance on the unit sphere. This geodesic distance is obtained between an elementary target and the observed Kennaugh matrix, and it is further utilized to compute a similarity measure between scattering mechanisms. The normalized similarity measure for each elementary target is then modulated with the total scattering power (Span). This measure is used to categorize pixels into three categories, i.e., odd-bounce, double-bounce, and volume, depending on which of the above scattering mechanisms dominate. Then the maximum likelihood classifier of Lee et al. based on the complex Wishart distribution is iteratively used for each category. Dominant scattering mechanisms are thus preserved in this classification scheme. We show results for L-band AIRSAR and ALOS-2 data sets acquired over San Francisco and Mumbai, respectively. The scattering mechanisms are better preserved using the proposed methodology than the unsupervised classification results using the Freeman-Durden scattering powers on an orientation angle corrected PolSAR image. Furthermore: 1) the scattering similarity is a completely nonnegative quantity unlike the negative powers that might occur in double-bounce and odd-bounce scattering component under Freeman-Durden decomposition and 2) the methodology can be extended to more canonical targets as well as for bistatic scattering
A clustering approach to heterogeneous change detection
Change detection in heterogeneous multitemporal satellite images is a challenging and still not much studied topic in remote sensing and earth observation. This paper focuses on comparison of image pairs covering the same geographical area and acquired by two different sensors, one optical radiometer and one synthetic aperture radar, at two different times. We propose a clustering-based technique to detect changes, identified as clusters that split or merge in the different images. To evaluate potentials and limitations of our method, we perform experiments on real data. Preliminary results confirm the relationship between splits and merges of clusters and the occurrence of changes. However, it becomes evident that it is necessary to incorporate prior, ancillary, or application-specific information to improve the interpretation of clustering results and to identify unambiguously the areas of change